1. Simplify the following:

Warm up
a. $(2-3 i)-(4-6 i)+(-2-5 i)$
d. $i^{3}=i^{2} \cdot i=-1 \cdot i=-i$

$$
-4-2 i
$$

b. $(2+3 i)(-4-\sqrt{-9})$
e. $i^{4}=i^{2} \cdot L^{2}=-1 \cdot-1=1$

$$
1-18 i
$$

$i^{5}=i^{4} \cdot i=1 \cdot i=i$
c. $\frac{1-i}{3+2 i} \cdot \frac{3-2 i}{3-2 i}$
$\begin{aligned} i^{6} & =i^{4} \cdot i^{2}=1 \cdot-1=-1 \\ i^{7} & =l^{2} \cdot i=-1 \cdot i=-i\end{aligned}$

$$
\frac{3-2 c-3 i+2 i}{9-6 i+6 i+4 k^{2}}=\frac{1-5 i}{13}=\frac{1}{13}-\frac{5}{13} i
$$

2. A football is thrown at a point 6 feet above the ground at a velocity of 60 feet per second at an angle of 45° with respect to the ground. The path of the football is given by the function $f(x)=-0.0168 x^{2}+x+6$ where $\mathrm{f}(\mathrm{x})$ is the height of the football (in feet) and x is the horizontal distance form the quarterback (in feet). What is the maximum height reached by the football?

$$
20.88 \text { feet }
$$

Feb 2-9:51 PM

2-2 Polynomial Functions of a Higher Degree
Leading Coefficient Test
End Behavior
Zeros of a polynomial

Polynomial - a smooth continuous curve

$$
\begin{gathered}
* \quad y=x^{2} \\
U
\end{gathered}
$$

$$
* y=x^{3}
$$

S

If $y=x^{a}$ and a is an odd number, the graph has on overall ' S ' shape.

If $y=x^{a}$ and a is an even number, the graph has on overall ' U ' shape.

To determine the 'left hand, right hand' or 'end' behavior use The Leading Coefficient Test

1. Look at the largest power, called degree, of the polynomial which tells us 'S' or 'U'.
2. Look at the coefficient of the highest degreed term to decide direction.

What does the degree of a polynomial tell us?
shape
Zeros $=$ roots $=$ solutions $=x$-intercepts (sometimes)

Describe the end behavior using the notation discussed.

Polynomial	degree	shape	$\substack{\text { end behavior } \\ y=3 x^{5}-4 x+1}$
$y=5-2 x^{16}$	5	S^{+},	
$\lim _{\substack{x \rightarrow \infty \\ \lim _{x \rightarrow-\infty} f(x)=\infty \\ y=-\infty}}$	16	$0^{-}+\infty$	

To find the zeros of a polynomial we factor, if possible.

$$
\begin{aligned}
& f(x)=x^{3}+x^{2}-20 x \\
& 0=x\left(x^{2}+x-20\right) \\
& x(x+5)(x-4) \\
&x=0 \mid x=-5) x=4
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=-x^{5}-x^{3}+20 x \\
&-x\left(x^{4}+x^{2}-20\right) \\
&-x\left(x^{2}+5\right)\left(x^{2}-4\right) \\
&-x\left(x^{2}+5\right)(x-2)(x+2) \\
& \left.\begin{array}{l}
\left.x=\left.0\right|^{2}=-5\right] \\
x= \pm \sqrt{5}
\end{array} \right\rvert\, x=2 \\
& x= \pm \sqrt{5} i
\end{aligned}
$$

If a polynomial does not factor, use the quadratic formula!!

Factoring Review
 sum/difference of cubes
 difference of squares

Factoring the Sum or Difference of Cubes

$$
\text { Multiply }(x-3)\left(x^{2}+3 x+9\right)=x^{3}-27 \neq(x-3)^{3}
$$

Factor

1. $x^{3}-8=(x-2)\left(x^{2}+2 x+4\right)$
2. $a^{3}+b^{3}$
$(a+b)\left(a^{2}-a b+b^{2}\right)$
3. $x^{3}+1=(x+1)(x-x+1)$
4. $8 x^{3}-27$ $(2 x-3)\left(4 x^{2}+6 x+9\right)$
5. $125 z^{3}+1$

What's the pattern?
trinomial
binomral
(cube root, cube root,), (square, squish, square,)
SOAP \Rightarrow same, opposite, always positive

Difference of Squares

You should be familar with this:

$$
4 x^{2}-9=(2 x-3)(2 x+3)
$$

But what if one of the terms is a binomial?

$$
(x+2)^{2}-25
$$

It is still the difference of two squared terms!

p 112 9, 15-21odd, 33, 35, 41-47 odd
Workbook p 17 odds- cubes column $1-7$ odd

Feb 2-9:51 PM

