2.4 Complex Numbers.notebook

Warm up

Divide

1. $\left(x^{4}-1\right) \div(x-1)$
2. $\left(6 x^{4}-x^{3}-x^{2}+9 x-3\right) \div\left(x^{2}+x-1\right)$
$x^{3}+x^{2}+x+1$
$\sum 6 x^{2}-7 x+12+\frac{-10 x+9}{x^{2}+x-1}$

$$
x^{3}+x^{2}+x+1 乌
$$

Sep 23-7:36 AM

Feb 2-9:51 PM

2.4 Complex Numbers.notebook

2.4 Complex Numbers define operations with complex numbers

What is a complex number?

2.4 Complex Numbers.notebook

1. Solve $x^{2}+1=0$

$$
\begin{aligned}
& x^{2}=-1 \\
& x= \pm \sqrt{-1} \\
& x= \pm i
\end{aligned}
$$

Standard form of a complex number

$a+0 i$
pure real
$0+b i$
pure imaginary

2.4 Complex Numbers. notebook

$$
\begin{gathered}
a+b i=c+d i \quad \text { if and only if } \\
a=c \quad \text { and } \quad b=d
\end{gathered}
$$

2. $\underline{3}+\underline{6 i}=(\underline{a+4})+\underline{(b-2)} i$ find a and b

$$
\begin{array}{ll}
3=a+4 & 6=b-2 \\
-1=a & 8=b
\end{array}
$$

Add and Subtract complex numbers

3. $(7+3 i)+(5-4 i)=12-i$
4. $(3+4 i)(5-2 i)=-2+6 i$
5. $4 i-(-3+5 i)+(2-6 i)=5-7 i$
6. $\binom{2-\sqrt{-9}}{\mathrm{Fl}_{1} \cdot \sqrt{9}}+(4+\sqrt{-25})$
$\binom{F-19}{2-3 i}+(4+5 i)=6+2 i$

Multiply complex numbers

7. $(\sqrt{-8})(\sqrt{-50})$
8. $(\sqrt{-5})^{2}$
$\sqrt{-8 \cdots 50} \sqrt{400}= \begin{cases}i \sqrt{8} \cdot i \sqrt{50} & i \sqrt{5} \cdot i \sqrt{5} \\ i^{2} \sqrt{400} & i^{2}(5) \\ i^{2} \cdot 20 & -5 \\ -20 & 0(4)\end{cases}$
9. $8 i(4-3 i)$
10. $(3-i)(5+4 i)=15+12 i-5 i+4 i^{2}$
$24+32 i$
$19+24 i \quad 16-17 i$
11. $(5-3 i)^{2}$
$19+7 i$
$16-30 i \quad 25-30 i \mp 9 i^{2}$

Sep 15-5:50 AM

Each complex number has a complex conjugate

$2+3 i$
$-5-i$
$13 i$
$-13 i$
4
2-3i
$-5+i$
4

Multiplying complex conjugates $=a$ constant

$$
\begin{gathered}
(2+3 i)(2 \cdot 3 i) \\
4+6 x-60+9 i \\
13
\end{gathered}
$$

2.4 Complex Numbers.notebook

Writing a Quotient in Standard Form
12. $\frac{6}{2+3 i} \cdot \frac{2-3 i}{2 \cdot 3 i}$
13. $\frac{4-5 i}{1-i} \cdot \frac{1+i}{1+i}=\frac{}{2}$
$\frac{12-18 i}{13}$
$\frac{9}{2}-\frac{i}{2}$
$\frac{12}{13}-\frac{18}{13} i$
$\frac{9}{2}-\frac{1}{2} i$

Powers of i

$i^{0}=1$	i^{n}, divide n by 4
$l^{1}=i$	if the remainder is 0, the number simplifies to 1
$l^{2}=-1$	if the remainder is 1 , the number simplifies to i
$i^{3}=i^{2} \cdot l^{2}=-i$	if the remainder is 2 , the number simplifies to -1
$i^{4}=i^{2} \cdot i^{2}=1$	if the remainder is 3, the number simplifies to $-i$
$i^{5}=i^{4} \cdot i=i$	

Complex solutions of a quadratic

$$
\begin{array}{ll}
x^{2}+4=0 & 6 x^{2}-2 x+5=0 \\
x^{2}=-4 & 6 x^{2}-2 x \quad=-5 \\
x= \pm \sqrt{-4} & 6\left(x^{2}-\frac{1}{3} x+\frac{1^{2}}{6}\right)=-5+6\left(\frac{1}{36}\right) \\
x= \pm 2 i & \frac{6}{6}\left(x-\frac{1}{6}\right)^{2}=-\frac{29}{6} \\
& \left(x-\frac{1}{6}\right)^{2}=\frac{-29}{36} \quad x=\frac{2 \pm \sqrt{14-4(6)(5)}}{2(6)} \\
& x-\frac{1}{6}= \pm \sqrt{\frac{29}{36}} \\
x=\frac{1}{6} \pm \frac{\sqrt{29}}{6} i & \frac{2 \pm \sqrt{116}}{12} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \frac{2 \pm-\sqrt{-29}}{6} \\
&
\end{array}
$$

