WARM UP - Also get out your HW WB pg 10.

1) Graph the following function on your graphing calculator.

State the coordinates of the vertex. (3,5)
Then state the domain and range, using interval notation.

$$
\begin{array}{ll}
D \therefore(-\infty, \infty) \\
R \therefore(-\infty, 5]
\end{array} . \quad f(x)=-|x-3|+5
$$

2) Find the slope of the line containing the points:
$(-3,8)$ and $(-3,-15) \quad-\frac{23}{0}=4 n d$
3) Write the equation of the graph.

$$
y=|x|-6 \quad x=\frac{0}{-23}=0
$$

4) Line L has an undefined slope. Line M is $Y_{\text {perpendicular }}$ to line L . Which of the following could be the equation of line M ?
A) $x=y$
(B) $y=12$
C) $x=-8$
D) $x y=9$

Get out your homework. Compare your graphs with someone sitting next to you.

2.6: Family of Functions

Objective:
To graph an absolute value function by performing transformations (vertical and horizontal shifts and reflections) on the parent graph

Vocubulary to recall from Geometry.

OODOD
Absolute Value Function

The absolute value function is defined by $f(x)=|x|$.
This is the absolute value parent function.

$$
\left.\begin{array}{c|c}
x & y \\
\hline 0 & 0 \\
\hline 1 & 1 \\
\hline-1 & 1
\end{array}\right\} \begin{gathered}
\text { reference } \\
\text { points }
\end{gathered}
$$

-0000

Parent Function: $y=|x|$

V-shape
It is symmetric about the y-axis

The vertex is the minimum point on the graph

-2
-3
-4
-5
-6
-7
-8

Observation

How to perform transformations on the absolute value function.

What did you observe on your calculator?
 $$
\begin{array}{ll} y=|x| & y \text {-int }(0,0) \\ y=|x|+2 & y-\text { int }(0,2) \text { up } 2 \\ y=|x|-5 & y-\text { int }(0,-5) \text { down } 5 \end{array}
$$

Observation

Describe how the family of graphs $y=|x| \pm k$ is related to $y=|x|$.

Vertical shift $\mathbf{y}=|\mathbf{x}|+\mathbf{k}$ Translation up k units, $\mathrm{k}>0$

$$
y=|x|-k \text { Translation down } k \text { units, } k>0
$$

ODD
 Observation

Now,

what did you observe on your calculator.

$$
\begin{array}{llll}
y=|x| & & x \text {-int } & (0,0) \\
y=|x+2| & \text { left 2 } & & (-2,0) \\
y=|x-5| & \text { right 5 } & & (5,0)
\end{array}
$$

ODD
 Observation

Describe how the family of graphs $y=|x \pm h|$ is related to $y=|x|$.

Horizontal shift $y=|x-h|$ Translation right h units, $h>0$ $y=|x+h|$ Translation left h units, $h>0$

Exercise 1

What happened to the parent function when you graphed

$y=-|x| ?$
reflection over the x-axis

Reflection over the x-axis

OOODO
 Multiple Transformations

Without a graphing calculator, describe and graph the following functions.

1) $y=|x-2|+5$
right 2 up 5
$v(2,5)$

Jul 23-2:51 PM

Write the equation of the graph.

Get a white board, marker and eraser to reflect on your progress.

Graph on your white board showing at least 3 points.

1) $y=|x-1|-3 \quad V(1,-3)$
2) $f(x)=\frac{4}{5}-|x+1|+4 \vee(-1,4)$
3) $y=|x+1|-6$

Write the equation of $y=|x|$ after the following translations.
4) shifted 2 units right and 3 units up

$$
y=|x-2|+3
$$

5) a vertex at (-3, -7), turning down

$$
y=-|x+3|-7
$$

6) The graph of which equation will NOT have a y-intercept of 5 ?
A. $y=|x|+5$
B. $y=|x-5|$
C. $y=|x-5|+5$
D. $y=|x+5|$
7) Given the piecewise function, what is the value of:

$$
\begin{aligned}
& f(-7)=3 \\
& f(-3)=-1 \\
& f(1)=-4 \\
& f(5)=-4
\end{aligned}
$$

