Warm up

Sketch by hand.

1. $y=-\log _{6}(x-1)+2 \begin{array}{r}\log _{6}(-x-1)+2 \\ (-(x+1))+2\end{array} \quad$ 2. $y=-4^{x+1}-5$

Feb 2-9:51 PM

3.2 Logarithmic Functions and Their Graphs

Day 2

$\exp \longrightarrow \log \longrightarrow \exp$
evaluate
properties of logs

Rewrite from exponential form to log form
 Drop, eris, cross

$$
\text { Yequals log base a of } x
$$

Rewrite in log form

$$
\begin{array}{lllr}
3=4^{x} & x=5^{2} & 4=x^{3} & e^{x}=3 \\
x=\log _{4} 3 & 2=\log _{5} x & 3=\log _{x} 4 & \ln 3=x \\
& & & \ln 3=x
\end{array}
$$

Rewrite in exponential form

$\log _{x} 4=7$	$\log _{0} 3=x$	$\log _{2} x=4$	$\ln 5=x$
$x^{7}=4$	$10^{x}=3$	$2^{4}=x$	$e^{x}=5$

\log equation in general $y=\log _{a} x$
Rewrite in exponential form
$\log _{2} 8=3(8,3) \quad \log _{2} 1=0(1,0) \quad \log _{2} 2=1 \quad(2,1)$
$2^{3}=8 \quad 2^{\circ}=1 \quad 2^{\prime}=2$
What does it mean????

Using logs to evaluate

$$
y=\log _{2} 8
$$

change to exponential
$2^{y}=8$ get bases to match
$2^{y}=2^{3} \quad$ so... exponents are equal
$y=3$
$y=\log _{10} \frac{1}{1000}$
$1=3^{y}$

$$
10^{y}=\frac{1}{1000}
$$

$$
10^{y}=\frac{1}{10^{3}}
$$

$$
\begin{aligned}
10 y & =10^{-3} \\
y & =-3
\end{aligned}
$$

Properties of Logs

$$
\begin{aligned}
& \log _{a} 1=0 \longrightarrow a^{0}=1 \checkmark \quad \ln 1=0 \longrightarrow e^{0}=1 \\
& \operatorname{RP}(1,0) \\
& \log _{a} a=1 \quad a^{\prime}=a \quad \checkmark \quad \ln _{e} e=1 \longrightarrow e^{\prime}=e \\
& \text { RP }(9,1) \\
& \log _{a}\left(0=x \longrightarrow a^{x}=a^{x} \checkmark\right. \\
& \ln (e)=x \longrightarrow e^{x}=e^{x} \\
& a^{\left(\log _{a} x\right.}=x \longrightarrow \log _{a} x=\log _{a} x \quad e^{\ln x}=x \longrightarrow \ln x=\ln x \\
& \text { If } \log _{a} x=\log _{a} y \\
& \text { Then } x=y \\
& \text { If } \ln x=\ln y \\
& \text { Then } x=y
\end{aligned}
$$

Now that we have these properties, let's revisit our evaluation problems.

$$
\begin{array}{rlrl}
y & =\log _{2} 8 & y & =\log _{5} 25 \\
& =\log _{2} 2^{3} & & =\log _{5} 5^{2} \\
& =3 & & =2 \\
y & =\log _{10} \frac{1}{1000} & y & =\log _{7} \frac{1}{49} \\
& =\log _{10} 10^{-3} & & \log _{7} 49^{-1} \\
& =-3 & & \log _{7} 7^{2} \\
y & =\log _{3} 1 & y & =\log _{12} 12^{1} \\
& =0 & & =1 \\
y & =\ln 1=0 & y & =\ln e=1
\end{array}
$$

If no base is written for a common logarithmic expression it is understood to be 10!

- common log base 10 is what calculator uses
- e is the base for natural logs

$\ln \pi$

$\log 15$

Evaluate the following using your calculator
$10^{\circ}=1 \log 6=.78$

$$
e^{0}=1 \quad \ln 4=1.37
$$

$10=10$ between o\& 1
10

$$
\log _{10} 10=1
$$

$f=e=: 2.7$
$e^{2}=>4$ $\ln e=1$
$D(0, \infty)$

Aug 29-6:38 AM

