Warm up

1. Evaluate without a calculator.
a. $y=\log _{5} \frac{1}{5}=\log _{5} 5^{-(1)}=-1$
b. $y=\log _{2} 32$
c. $y=\log 10^{2}$
d. $y=\ln e$
e. $y=\log _{12} 1$

Feb 2-9:51 PM

3.3 Properties of Logs

Change of base

More Properties of logs
Expand Logs
Condense Logs

Change of Base

If asked to evaluate $\log _{3} 4 \rightarrow \frac{\log 4}{\log 3}$

Change of base says $\frac{\log _{b} x}{\log _{b} a}=\frac{\log _{10} x}{\log _{10} a}=\frac{\ln x}{\ln a}$

$$
\log _{5} 62=\frac{\log 62}{\log 5} \text { or } \frac{\ln 62}{\ln 5}=2.56
$$

$5^{\circ}=1$
$5^{\prime}=5$
$5^{2}=25-62$ between $2: 3$ $5^{3}=125$

Properties of Logs
 $x^{2} \cdot \vec{x}^{3}=x^{5}$

$\log _{a} m n=\log _{a} m+\log _{a} n \longmapsto$ Each m or n must be a single \# or

$$
\frac{x^{3}}{x^{2}}=x^{\prime}
$$

$\log _{a} \frac{m}{n}=\log _{a} m-\log _{a} n$
$\begin{aligned} \log _{a} m^{n} & =n \log _{a} m \\ & =\log _{d}(m \cdot m\end{aligned}$
$\log _{a} m+\log _{a} m+\log _{a} m \ldots n$ times
$\log _{a} \frac{1}{m}=\log _{a} \log _{a} m^{-1}=-1 \log _{a} m$

Expand

$\log _{a} 3 x^{3} y^{4}=\log _{a} 3+\log _{a} x^{3}+\log _{a} y^{9}$ $\log _{a} 3+3 \log _{a} x+4 \log _{a} y$
$\begin{aligned} \ln \frac{x^{3} \sqrt{y}}{z^{4} w}= & \left.\left(\ln x^{3}+\begin{array}{l}\sqrt{y}=y^{\frac{1}{2}} \\ \\ \\ \\ 3 \ln x+ \\ y\end{array}\right)+\frac{1}{2} \ln y-4 \ln z-\ln w+\ln w\right)\end{aligned}$
$(x-1)(x+1)$
$\ln \left(\frac{\left(x^{2}-1\right)}{x}\right)=\ln (x-1)+\ln (x+1)-\ln x$
$\ln \pm \log$ cannot be distruted over a polynomial

$$
\begin{aligned}
& \begin{aligned}
\text { Condense Logs } & \Rightarrow \text { single log } \\
& \text { base needs to be the same }
\end{aligned} \\
& \begin{aligned}
& \log _{2} 7+(4) \log _{2} x \log _{2} 7+\log _{2} x^{4}=\log _{2}\left(7 x^{4}\right) \\
& \log _{2} \log _{4}(x-2)-\log _{4} x
\end{aligned} \\
& \log _{4}(x-2)^{2}-\log _{4} x=\log _{4}\left(\frac{(x-2)^{2}}{x}\right) \\
& -\log _{4} x+\log _{4}(x-2)^{2}= \\
& -6 \log x+(4 \log y-\log z
\end{aligned}
$$

Evaluate

$$
\begin{gathered}
\log _{2} 4+\log _{3} 27-\log 100 \\
\log _{2} 2^{2} \mid \log _{3} 3^{3} \\
2+3-2 \\
2
\end{gathered}
$$

$\log _{3} 18-\log _{3} 2$

$$
\log _{3}\left(\frac{18}{2}\right)=\log _{3} 9=\log _{3} 3^{2}=2
$$

Aug 29-6:38 AM

