4.1 Radian and Degree Measure

Copy the information below

	$30^{\circ}(\pi / 6)$	$60^{\circ}(\pi / 3)$	$45^{\circ}(\pi / 4)$
\sin	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$
\cos	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}} \cdot \sqrt{\sqrt{2}}=\frac{\sqrt{2}}{2}$
\tan	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	1

4.1 -Radian and Degree Measure - part 1

- Trig Ratios
- Standard Position
- Radians
- What Quadrant am I in?
- Co-terminal Angles
- Complementary and Supplementary Angles
- Conversions
- Degrees Minutes Seconds (DMS) on Calculator
Where do those ratios come from????

$\sin 45=\frac{1}{\sqrt{2}}$
$\cos 45=\frac{1}{\sqrt{2}}$
$\tan 45=1$
SOM CH TO

$$
\sin 60=\frac{\sqrt{3}}{2}
$$

$$
\cos 30=\frac{\sqrt{3}}{2} \quad \cos 60=\frac{1}{2}
$$

$$
\tan 3 \sigma^{\circ}=\frac{1}{\sqrt{3}} \quad \tan 60=\sqrt{3}
$$

An angle starts af the initial side and ends at the terminal side.

An angle is said to be in standard position when the initial side is on the positive x -axis.

A positive angle in standard position starts on the x-axis and moves in a counter-clockwise direction.

A negative angle in standard position starts on the x-axis and moves in a clockwise direction.

Radian measure - the length of the radius as an arc on the circle

Nov 21-9:19 AM

Jan 7-5:17 PM

Jan 7-5:18 PM

Jan 7-5:19 PM

Coterminal Angles: Angles that share initial and terminal sides

Find one positive and one negative coterminal angle for: tor $-360^{\circ}, 2 \pi, 6.28$

$$
\begin{aligned}
& \begin{array}{llc}
337^{\circ} & \frac{5 \pi}{6}+2 \pi & 2.3 \\
+\cos A \frac{360}{697} & \frac{5 \pi}{6}+\frac{12 \pi}{6}=\frac{17 \pi}{6} & \frac{+6.28}{8.58}
\end{array} \\
& -\cot A-3370 \begin{array}{lll}
& =\frac{360}{337} \\
-23
\end{array} \quad \frac{55}{6}-\frac{127}{6}=\frac{-7 \pi}{6} \quad \begin{array}{ll}
2.3-6.28 \\
& -3.98
\end{array} \\
& \begin{array}{ll}
\begin{array}{ll}
-405^{\circ}
\end{array} & -\frac{5 \pi}{4}+\frac{8 \pi}{4}=\frac{3 \pi}{4} \\
& \text { COTA }+\frac{360}{-45}
\end{array} \quad-\frac{5 \pi}{4}-\frac{8 \pi}{4}=\frac{-13 \pi}{4} \\
& -5.2 \\
& +\cot A+\frac{360}{315} \\
& \frac{9 \pi}{4}
\end{aligned}
$$

Complementary Angles: Two positive angles whose sum

Supplementary Angles: Two positive angles whose sum is \square or \square or \square

Give the complement and supplement for the following:

Conversions Between Degrees and Radians

1. To convert degrees to radians, multiply degrees by $\frac{\pi \mathrm{rad}}{180^{\circ}}$.
2. To convert radians to degrees, multiply radians by $\frac{180^{\circ}}{\pi \mathrm{rad}}$.

To apply these two conversion rules, use the basic relationship $\pi \mathrm{rad}=180^{\circ}$.
(See Figure 4.14.)

1. 225° in terms of π $225^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{225 \pi}{180}=\frac{5 \pi}{4}$
2. 320° in terms of π $320 \cdot \frac{\pi}{180}=\frac{32 \pi}{18}=\frac{160}{9}$
3. 112° in decimal form
$112 \cdot \frac{\pi}{180}=\frac{112 \pi}{180}=1.95$ radians
4. $\frac{5 \pi}{\beta} \cdot \frac{\frac{180}{186}}{\pi}=300^{\circ}$
5. 3.2 radians
$3.2 \cdot \frac{180}{\pi}$
183.35°

Degrees, Minutes, Seconds on Calculator

Convert 39.25° to DMS. $39^{\circ} 15^{\prime} 0^{\prime \prime}$

Convert $185^{\circ} 13^{\prime} 42$ " decimal form.

$$
185.23^{\circ}
$$

