Warm up

Find the exact ratio of the trig functions below.

1. $\sin 60^{\circ}$
2. $\cos 45^{\circ}$
3. $\tan 30^{\circ}$
4. $\tan \frac{\pi}{4}$
5. $\cos \frac{\pi}{6}$
6. $\sin \frac{\pi}{6}$

Find the complement and supplement of the angle
7. $\frac{2 \pi}{7}$
8. 93°
9. Convert the radian angle to a degree angle. $\frac{11 \pi}{6}$
10. Convert the degree angle to a radian angle. 270°

Feb 2-9:51 PM

4.1 Day 2 Radian and Degree Measure Arc Length Angular Speed Linear Speed Area of a Sector

$A L=$ radians \cdot radius

$$
160 \cdot \frac{\pi}{180} \cdot 27^{11}
$$

$$
A L=75.4^{\prime \prime}
$$

$A L=57.18^{\prime} \quad A L=18.22^{\prime}$
$(360 \cdot 87) \frac{\pi}{180} \cdot 12$

Angular Speed - the rate at which an angle grows

- measured in radians/time (rad/sec, rad/hr, etc)

Linear Speed - the rate at which the arc length grows

- measured in length/time (ft/sec, m/hr, meters/min, etc)

To find angular speed:
 AS $=$ revolutions $\times 2 \pi$

$$
\frac{1 \text { ket }}{\min } \cdot \frac{2 \pi}{4 \pi}
$$

A circular blade on a saw rotates 2400 revolutions per minute. Find the angular speed in radians per second.

$$
\begin{gathered}
\frac{2400 \mathrm{ros}}{\mathrm{~min}} \cdot \frac{2 \pi}{1 \mathrm{sev}}=4800 \pi \mathrm{rad} / \mathrm{min}=15079.64 \frac{\mathrm{rad}}{\mathrm{~min}} \\
15079.64 \frac{\mathrm{rad}}{\mathrm{ran}} \cdot \frac{1 \mathrm{mmn}}{60 \mathrm{sec}} \\
251.33 \mathrm{rad} / \mathrm{sec}
\end{gathered}
$$

```
To find Linear speed:
LS = radius x radians (same as Arc Length!)
LS = radius x AS
The saw blade from the previous problem has a diameter of 8 inches. Find the linear speed of the blade tip in inches per second.
\[
\begin{aligned}
A S & =251.33 \frac{\mathrm{rdd}}{\mathrm{sec}} \\
L S & =251.33 \frac{\mathrm{rod}}{\mathrm{sec}} \cdot \frac{4 \mathrm{in}}{1.0 \mathrm{cod}} \\
& =1005.31 \frac{\mathrm{in}}{\mathrm{sec}}
\end{aligned}
\]
```


How fast is the wheel moving in mph?

The second hand of a clock is 8 cm long. Find the linear speed of the tip of the second hand as it passes around the clock face.

$$
\begin{aligned}
A S= & \frac{1 \mathrm{rev}}{60 \mathrm{sec}} \cdot \frac{2 \pi}{1 \mathrm{rev}} \\
= & \frac{2 \pi \mathrm{rad}}{60 \mathrm{sec}} \\
L S= & \frac{\pi \mathrm{rad}}{30 \mathrm{sec}} \cdot \frac{8 \mathrm{~cm}}{1 \mathrm{rad}} \\
& .84 \mathrm{~cm} / \mathrm{sec}
\end{aligned}
$$

Area of a Sector

$$
A=\frac{1}{2} r^{2} \theta, \theta \text { is measured in radians }
$$

A sprinkler on a golf course is set to spray water over a distance of 75 feet and rotates though and angle of 135°. Find the area of the fairway watered by the sprinkler.

$$
\begin{aligned}
& r=75 \mathrm{f} \\
& \theta=135^{\circ} \\
& A=\frac{1}{2}(135)\left(\frac{\pi}{180}\right) \cdot 75^{2} \\
& =6626.8 \mathrm{ft}^{2}
\end{aligned}
$$

Jan 7-4:16 PM

Jan 7-4:17 PM

Jan 7-4:18 PM

Jan 7-4:20 PM

$x=\cos \Theta$
$y=\sin \Theta$
$y / x=\sin \Theta / \cos \Theta=\tan \Theta$

Jan 7-4:21 PM

$x=\cos \Theta$
$y=\sin \Theta$
$y / x=\sin \Theta / \cos \Theta=\tan \Theta$

