Warm up

1. What quadrant am I in?
a. -200°
b. $\frac{11 \pi}{9}$
c. 5 radians
2. Am I positive or negative?
a. $\cos 290^{\circ}$
b. $\tan \frac{2 \pi}{3}$
c. $\csc \frac{\pi}{4}$
3. Find the linear speed in miles per hour of a car whose wheel diameter is 15 inches moving 2000 rpm.

4.4 Trig Functions of Any Angle Day 2

Evaluating common angles
Evaluating non-common angles
Finding theta

Jan 3-2:37 PM

Let's Practice using what we know about reference angles and the signs in the quadrants.
Find the fottowing ratios/values:

$$
\cot \frac{7 \pi}{4}=-1
$$

π	$\frac{\sin \pi}{\cos \pi}=\frac{0}{-1}=0$
$(-1,0)$	$\quad-2$

Now let's work backwards -

Given a trig function and its ratio, find the angle over the interval $0^{\circ} \leq \theta<360^{\circ}$

Q 2,3
RA 60°
$\begin{aligned} \csc \theta & =2 \\ \sin \theta & =\frac{1}{2}\end{aligned}$
$Q I$ II $R A=30$ $\tan \theta$ is undefined
$\frac{\sin \theta}{\cos \theta}=0$
$\theta=90^{\circ}, 270^{\circ} \quad(0,-1)$
120°

Given a trig function and its ratio,
find the angle over the interval $0 \leq \theta<2 \pi$

$$
\begin{aligned}
& \cot \theta=\frac{1}{\sqrt{3}} \\
& \tan \theta=\sqrt{3} \\
& Q 1,3 \\
& R A=\frac{\pi}{3} \quad \theta=\frac{\pi}{3}, \frac{4 \pi}{3} \\
& \sin \theta=0 \\
& (-1,0) \quad(1,0) \quad \theta=0, \pi \\
& \tan \theta=1 \\
& Q 1,3 \quad \theta=\frac{\pi}{4}, \frac{5 \pi}{4} \\
& \text { RA } \frac{\pi}{4} \quad
\end{aligned}
$$

Find θ over $0^{\circ} \leq \theta<360^{\circ}$

$\sin \theta=0.4863$
Q 1, 2
$R A=29.1$

29.1

180-29.1
150.9
$\tan \theta=-3.5629$
Q 2. 4
RA 74.32 drop negative

$180-74.32$
105.68

360-74.32 285.68

Find θ over $0 \leq \theta<2 \pi$
$\sec \theta=2.4065$
Q 1, 4
RA $\cos ^{-1}\left(\frac{1}{2.4065}\right)$ 1.14

$\csc \theta=-1.3621$
Q 3.4
RA $\sin ^{-1}\left(\frac{1}{1.3621}\right)=.82$

$\pi+.82$
3.97
$2 \pi-.82$
5.46

