4.7 Day 1 inverse trig functions (2).notebook

4.7 Inverse Trig Functions
 Graphs of inverse trig functions

Ranges of inverse trig functions
Evaluating
Compositions

Feb 21-7:02 AM

$$
\begin{aligned}
& \left.\frac{D_{0}}{\square}\right)_{0}^{+} \text {summary Memorize the ranges.' } \\
& c O_{s^{-1}} x \\
& {[0, \pi]} \\
& \left.\frac{\pi}{-\frac{\pi}{2}}\right)^{-2} \sin ^{-1} x \\
& {\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]} \\
& c O t^{-1} x \\
& (0, \pi) \\
& \tan ^{-1} x \\
& \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\
& s \operatorname{lcc}^{-1} x[0, \pi] \\
& \csc ^{-1} x \quad\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
& x \neq \frac{\pi}{2} \\
& x \neq 0
\end{aligned}
$$

$\sin ^{-1} \theta$ means the same as $\arcsin \theta$
$\sin ^{-1} \theta$ and $\arcsin \theta$ are kinda like $\sin \theta=x 2$ solutions
but with the restrictions imposed by the inverse function
Evaluate the inverse function use radians!
$\arcsin \left(-\frac{1}{\sqrt{2}}\right) \quad \cos ^{-1}\left(\frac{\sqrt{3}}{2}\right) \quad \tan ^{-1}(-\sqrt{3}) \quad \arctan (0)=0 \quad \operatorname{ratio}$ angle

3 not in domain

4.7 Day 1 inverse trig functions (2) .notebook

Compositions

$$
\begin{gathered}
\tan (\underbrace{\tan \left(\frac{\pi}{6}\right)}_{\frac{\arctan \left(\frac{1}{\sqrt{3}}\right)}{\sqrt{3}}}
\end{gathered}
$$

$\arccos (\cos \pi)$

$$
\arccos (-1)
$$

BUT....
$\arcsin \left(\sin \left(\frac{5 \pi}{6}\right)\right) \quad \arccos \left(\cos \frac{5 \pi}{6}\right) \quad \cos (\arctan (-1))$
$\arcsin \left(\frac{1}{2}\right)=\frac{\pi}{6}$

$\frac{5 \pi}{6}$

$$
\cos \left(-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}
$$

4.7 Day 1 inverse trig functions (2).notebook

If the value is not a common ratio:

$$
\begin{gathered}
\tan \left(\arccos \left(\frac{1}{3}\right)\right) \cos \theta=\frac{1}{3} \quad \cot \left(\arcsin \left(\frac{-2 x}{1}\right)\right)=\frac{\sqrt{1-4 x^{2}}}{-2 x} \\
\tan \theta=2 \sqrt{2} \rightarrow 1^{2}+b^{2}=3^{2} \quad x \neq 0 \\
l^{2}=(-2 x)^{2}+b^{2} \\
1^{2}=4 x^{2}+b^{2}
\end{gathered}
$$

