Values Quiz \#2

Feb 2-9:51 PM

Feb 2-9:51 PM

4.8 Day 1 Applications \& Models Solving right triangles Bearings

To solve a right triangle means to find all the missing sides and angles

a 12

find angles in degrees

From a point 65 ft in front of a church, the angles of Examples are elevation to the base of the steeple and the top of the steeple are 35° and 43°, respectively. Find the height

$$
\begin{array}{rlrl}
\tan 35 & =\frac{h_{1}}{65} & \tan 43 & =\frac{h_{2}}{65} \\
65 \tan 35 & =h_{1} & 65 \tan 43 & =h_{2} \\
h_{1} & =45.51 & 60.61 & =h_{2}
\end{array}
$$

$$
h_{2}-h_{1}=15.1 \mathrm{f}
$$

From the time a small airplane is 100 ft high and 1600 ground ft from its landing runway, the plane descends in a straight line to the runway. Determine the plane's angle of descent.

$$
\begin{aligned}
\tan \theta & =\frac{100}{1600} \\
\tan ^{-1}\left(\frac{1}{16}\right) & =\theta \\
\theta & =3.58^{\circ}
\end{aligned}
$$

Bearings

2 ways:

1) From north moving clockwise

2) From a fixed NS line

N27E
$s 72 w$

A sailboat leaves a pier and heads due west at 8 knots. After 15 minutes the sailboat tacks, changing course to $N 16^{\circ} \mathrm{W}$ at 10 knots. Find the sailboat's bearing and distance from the pier after 12 minutes on this course.

While visiting Sand Dunes National Park, Ian approximated the angle of elevation to the top of a sand dune to be 20°. After walking 800 feet closer, he guessed that the angle of elevation had increased by 15°. Approximately how tall is the dune he was observing?

Feb 2-9:51 PM

