5.1 Using Fundamental Identities Reciprocal Identities Quotient Identities

Pythagorean Identities Simplifying Trig Expressions

Reciprocal Identities

$$
\begin{array}{lll}
\sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta} \\
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta}
\end{array}
$$

Quotient Identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Simplifying by Factoring GCF

$$
\begin{aligned}
& \cos ^{2} x \csc x-\underline{\csc x} \quad \sin ^{2} x+\cos ^{2} x=1 \\
& \csc x\left(\cos ^{2} x-1\right) \\
& \csc x\left(-\sin ^{2} x\right) \\
& \frac{1}{\sin x}\left(-\frac{\sin ^{2} x}{1}\right) \\
& -\sin x
\end{aligned}
$$

5.1 part 1. notebook

$$
\begin{aligned}
& \text { Simplify by factoring } \\
& \left(\begin{array}{l}
1-\cos ^{2} x \\
\sin ^{2} x \\
(1-\cos x)(1+\cos x)
\end{array}\right. \\
& \begin{array}{r}
r=\csc x \\
2 \csc ^{2} x-7 \csc x+6
\end{array} \\
& 2 r^{2}-7 r+6 \\
& 2 r^{2}-3 r-4 r+6 \\
& r(2 r-3)-2(2 r-3) \\
& (r-2)(2 r-3) \\
& (\csc x-2)(2 \csc x-3)
\end{aligned}
$$

Simplifying with Substitution and Factoring

$$
\begin{array}{ll}
\sec ^{2} x+3 \tan x+1 & \underline{\sec ^{2} x}=\underline{\tan ^{2} x}+1 \\
\tan ^{2} x+1+3 \tan x+1 & \\
\tan ^{2} x+3 \tan x+2 & \sqrt{x^{2}+1} \neq x+1 \\
(\tan x+2)(\tan x+1) &
\end{array}
$$

Simplifying Using Reciprocals

$\csc x-\cos x \cot x$
$\frac{1}{\sin x}-\frac{\cos x}{1}\left(\frac{\cos x}{\sin x}\right)$
$\frac{1}{\sin x}-\frac{\cos ^{2} x}{\sin x}$
$\frac{1-\cos ^{2} x}{\sin x}$
$\frac{\sin ^{2} x}{\sin x}$ $\sin x$

$$
\begin{gathered}
\text { Simplifying Sums } \\
\frac{1}{1+\sin \theta}+\frac{1}{1-\sin \theta} \\
\frac{(1-\sin \theta)+(1+\sin \theta)}{(1+\sin \theta)(1-\sin \theta)} \\
\frac{2}{1-\sin \theta+\sin \theta-\sin ^{2} \theta} \\
\frac{2}{1-\sin ^{2} \theta} \\
\frac{2}{\cos ^{2} \theta} \\
2 \sec ^{2} \theta
\end{gathered}
$$

5.1 part 1.notebook

Feb 2-9:51 PM

