

Feb 2-9:51 PM

5.3 Solving Trig Equations Day 2

Multiple Angles Problems

We will use the domain $[0,2 \pi)$

1. $\cos 2 x=0$

$$
\frac{2 x}{2}=\underbrace{\frac{\pi}{2}, \frac{3 \pi}{2}}_{\text {set } 1} \underbrace{\frac{5 \pi}{2}}_{+2 \pi}, \frac{7 \pi}{2}) \frac{1}{2}
$$

$$
x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4} \frac{1}{2}(\frac{2 x}{2}=\underbrace{\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}}_{\text {set } 1} \underbrace{\frac{9 \pi}{4}, \frac{1 \pi}{4}, \frac{13 \pi}{4}}_{\text {sect }}, \frac{15 \pi}{4})
$$

$$
+2 \pi
$$

$$
x=\frac{\pi}{8}, \frac{3 \pi}{8}, 1 \frac{5 \pi}{8}, \frac{7 \pi}{8}, \frac{9 \pi}{8}, \frac{1 \pi}{8}, \frac{13 \pi}{8}, \frac{15 \pi}{8}
$$

$$
\begin{aligned}
& \text { 3. } 2 \sin 3 x=\sqrt{3} \\
& \sin 3 x=\frac{\sqrt{3}}{2} \\
& 3 x=\underbrace{3}_{\text {se ti, }}, \underbrace{\frac{2 \pi}{3}} \frac{\frac{\pi}{3}, \frac{8 \pi}{3}}{\text { set z }} \\
& x=\frac{\frac{\pi}{9}}{9}, \frac{2 \pi}{9}, \frac{7 \pi}{9}, \frac{8 \pi}{9}, \\
& \underbrace{\frac{13 \pi}{9}}_{2 \pi}, \frac{14 \pi}{9}
\end{aligned}
$$

Solve over [0, 2T).

Calculator $y=\cos x \quad y_{1}$

$$
\begin{aligned}
& \text { 5. } \underbrace{4 \sin x}_{Y_{1}}=\underbrace{\cos x-2}_{Y_{2}} \\
& \text { 6. } \left.\begin{array}{ll}
y=\cos x & y^{\prime} \\
y=x+x^{2} & y_{2}
\end{array}\right] \text { intersat } \\
& x=0.55 \\
& x \text {-courdinate } \\
& x=3.89,6.02
\end{aligned}
$$

