6.1 day 2 ambiguous case.notebook

Feb 2-9:51 PM

Page 9

6.1 day 2 ambiguous case.notebook

Ambiguous Case

What does ambiguous mean?

The ambiguous case for Law of Sines occurs when you are given an acute angle and two sides.

The angle given is acute. We will call it A.
$\mathrm{a}<\mathrm{h} \quad$ no triangle
$\mathrm{a}=\mathrm{h} \quad$ one triangle - right
$\mathrm{a} \geq \mathrm{b} \quad$ one triangle

6.1 day 2 ambiguous case.notebook

If you are given 2 angles can there be two triangles?

If you are given only one acute angle.....always test to determine the number of triangles.
height < opp side <adj side

Find h

$$
\text { if } h<a<b
$$ then two triangles!!!!

(big, bigger, biggest)

Remember: the variables may be different, so if the height is smaller than the opposite side and the opposite side is smaller than the adjacent side, then you have an ambiguous triangle.

6.1 day 2 ambiguous case. notebook

Apr 3-4:50 PM

$$
\begin{array}{|c}
A=60^{\circ}, \mathrm{a}=4, \mathrm{~b}=14
\end{array}
$$

6.1 day 2 ambiguous case.notebook

$\mathrm{C}=58^{\circ} \mathrm{b}=5, \mathrm{c}=4.5$	
$\frac{\sin 58}{4.5}=\frac{\sin B}{5}$	find $\mathrm{h}-0,1$, or 2 triangles?
$\sin \left(\frac{\sin 58}{4.5}\right)=B$	$\begin{array}{cc} \sin 58=\frac{h}{5} & 4.2<4.5<5 \\ 5 \sin 58=h & 2 \Delta \Delta^{\prime} 5 \\ A=5=4.24 & a=4.16 \\ B=70.56 & b=5 \\ C=58 & c=4.5 \end{array}$
$\begin{aligned} B^{\prime} & =180-70.44 \\ & =109.56 \\ A^{\prime} & =180-109.56-58 \\ & \frac{\sin 58}{4.5}=\frac{\sin 12.44}{a} \end{aligned}$	
$\frac{4.5 \sin 12.44}{\sin 58}-a$	

Apr 3-4:56 PM

What if the given angle is obtuse?

If $\mathrm{a}>\mathrm{b} \quad 1$ triangle
If $\mathrm{a}<\mathrm{b} \quad 0$ triangle
If the given angle is obtuse can the triangle be ambiguous?
So proceed to solve as usual!

6.1 day 2 ambiguous case.notebook

Page 9

