6.2 Law of Cosines and Area.notebook

LOS Word Problem Worksheet answers

1. ship to post $A=4.06$ miles and ship to shore $=2.47$ miles
2. $\mathrm{AF}=8.06$ miles, $\mathrm{BF}=4.82$ miles
3. height $=354.4 \mathrm{ft}$
4. $14,498.01 \mathrm{ft}$
5. 5.77 and 3.12
6. 108.6 ft
7. 61.7 ft
8. 158.9 ft

More LOS Practice Worksheet

1. no triangle
2. $A=38.6, B=105.4, b=26.2$
$A=141.4, B=2.6, b=1.2$
3. no triangle
4. $A=37.1, C=60.9, a=10.4$
5. $A=99, a=28.3, b=19.1$
6. $A=24.6, B=80.4, a=20.7$
$A=5.4, B=99.6, a=4.7$

Feb 2-9:51 PM

6.2 Law of Cosines
 Solving Triangles
 Finding Area
 Heron's Formula

$$
\begin{aligned}
& a^{2}=\left(b^{2}\right)+c^{2}-2 b c \cos A \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& c^{2}=a^{2}+b^{2}-2 a b \cos C
\end{aligned}
$$

Example 2 SSS

$$
A=61.89 \quad a=18
$$

$$
B=78.54 \quad b=20
$$

$$
C=\frac{39.57}{180}{ }^{c=13}
$$

A: $\quad \frac{18^{2}-20^{2}-13^{2}}{-2(20)(13)}=\cos A$
$B: \quad \frac{20^{2}-18^{2}-13^{2}}{-2(20)(13)}=\cos B$

C! $\quad \frac{13^{2}-20^{2}-18^{2}}{-2(20)(18)}=\cos C$
Example $1 \quad A=44.49 \quad a=19$
$B=62^{\circ} \quad b=23.94$
SASs $\quad C=73.52 \quad c=26$

1) find side $b \quad 180 . \boldsymbol{Q 1}$
$b^{2}=19^{2}+26^{2}-2(19)(26) \cos 62$
$b=\sqrt{19^{2}+26^{2}-2(19)(26) \cos 62}$
$b=23.94$
2) find angle A using Law of Cosines
$19^{2}=26^{2}+23.94^{2}-2(26)(23.94) \cos A \quad$ coefficient of $\cos A$
$\cos ^{-1}\left(\frac{19^{2}-26^{2}-23.94^{2}}{2}\right)=\cos A$ divide by coefficient
$\cos ^{-1}\left(\frac{2(26)(23.94)}{2(24.99}\right)=\cos A$
$44.49=A$
3) find angle C
$26^{2}=19^{2}+23.94^{2}-2(19)(23.94) \cos C$
$\frac{26^{2}-19^{2}-23.94^{2}}{-2(19)(23.94)}=\cos C$

Example 3

$$
\begin{array}{ll}
A=10^{\circ} & a= \\
B= & b=15 \\
C= & c=8
\end{array}
$$

Area when no angles are given

Method 1: $K=\frac{1}{2} a b \sin C$
From Example \#2:

$$
\begin{array}{ll}
A=61.9^{\circ} & a=18 \\
B=78.5^{\circ} & b=20 \\
C=39.6^{\circ} & c=13
\end{array}
$$

1. Find one angle
using LOC
2. use $K=\frac{1}{2} a b \sin c$
with SAS

$$
K=\frac{1}{2}(20)(13) \sin 61.9
$$

$$
=114.67 \text { units }^{2}
$$

Method 2: Heron's Formula (no angle needed!)
$K=\sqrt{s(s-a)(s-b)(s-c)} \quad$ given $\quad s=\frac{a+b+c}{2}$

From Example \#2:

$$
S=\frac{18+20+13}{2}
$$

$a=18$
$s=25.5$
$b=20$
$c=13$

$$
\begin{aligned}
K & =\sqrt{25.5(25.5-18)(25.5-20)(25.5-13)} \\
& =114.67 \text { units }^{2}
\end{aligned}
$$

p421
3, 7, 9, 11, 23, 39-45 odd
6.2 Law of Cosines and Area.notebook

