6 Review day 1.notebook

1. Three gears are arranged as shown.

Warm up
Determine the measure of angle θ correct to the nearest degree.

For problems 2 and 3 round your answer to the nearest tenth.
2. Solve the triangle given $B=43, a=22, b=17$.
3. Find the area of a triangle with sides $a=6, b=12, c=7$.

Feb 2-9:51 PM

```
Chapter 6 Review Topics 
    1\Delta if given auta angle, opp side,adj side }->\textrm{h}=\textrm{olfig
    greer an athureangle, opp }>\mathrm{ adj siom
    gren 2 angles
\Delta if given aunte angle, gp side, adj vode }=>h>\mathrm{ ops 
    if given an obtuse angle, >ady >oppside
If given austeangle, opp sid, adj sidech h %ofaci,i
Arca K=\frac{1}{2}absmC: :\frac{1}{2}/\operatorname{sides})\mathrm{ sim (range batmen }
Area }k=\frac{2}{2
    利=\mp@subsup{b}{}{2}+\mp@subsup{c}{}{2}-2bc\operatorname{cos}A SAS
        - (a-cobc
        \mp@subsup{cos}{}{-1}}(\frac{\mp@subsup{a}{}{2}-\mp@subsup{b}{}{2}-\mp@subsup{c}{}{2}}{-2bc})=
    Area: Herons formula s=\frac{a+b+c}{2}
    Word problems using LOS,LOC
        bearingsy are measured from North
        bearings/ar
        look for alternate inkrior angles
        might use SOHC CAHTOA to find heights
            Arclonoth: AL=radius radians
        Arc
    Vectors
        find component form from pounts using terminal
        skethh rosultent vedors
        Find magnitide |v| = \sqrt{}{\mp@subsup{v}{1}{2}+\mp@subsup{v}{2}{2}}
        \mathrm{ find magnitude }=\sqrt{}{\mp@subsup{V}{1}{2}}
        Standard wit vector form ( i+j fomm)
        unit velor \langle\frac{u}{|l|}|}|\frac{\mp@subsup{u}{2}{}}{|lun}
        find trig component form from compment or,
            〈|w| cose,|||\operatorname{sn}0\mathrm{ >}
            \theta \text { is direction angle}
```



```
                . Aind dindon angle using tane =\frac{ve}{v}
```



```
            convert bearings to trig form
            to find new bearing use tan}0=\frac{\mp@subsup{v}{2}{}}{\mp@subsup{L}{0}{}
            Ond apply as mentioned above
        Dot product v.v= u
        Find angle bywwen 2 vedors
        cos}0=\frac{|.v}{|||||
        If u:v=0< 
                        orthognal vectors
```

 Apr 10-2:13 PM

Review Practice Problems

1. Use the given vectors for the following: $v=\langle-2,3\rangle \quad w=\langle 5,1\rangle$
a. sketch $w-v$
b. find the unit vector for vector v

$\langle-2,3\rangle$ QI
$\|v\|=\sqrt{4+9}=\sqrt{3}$
$\tan \theta=\frac{3}{2} \quad(R A) \quad\langle\sqrt{13} \cos 123.69, \sqrt{13} \sin 123.69\rangle$
Bl|
2. How many triangles with given information can be formed?

Do not solve.
a. $A=61^{\circ}, a=8, b=21$

$$
\begin{gathered}
21 \sin 61=h=18.37 \\
8<18.37 \text { no } \Delta
\end{gathered}
$$

b. $A=112^{\circ}, a=15, b=17$

c. $B=18^{\circ}, C=65^{\circ}, \mathrm{c}=12$

2 angles given 1Δ
3. Solve the triangle to two decimal places.

$$
a=7, b=15, c=19
$$

$7^{2}=15^{2}+19^{2}-2(15)(19) \cos A$
$16^{2}=7^{2}+19^{2}-2(B)(19) \cos B$
$19^{2}=7^{2}+15^{2}-2(4)(15) \cos C$
$\left.\begin{array}{l}A=\cos ^{-1}\left(\frac{7^{2}-15^{2}-19^{2}}{-2(15)(19)}\right)=19.59 \\ B=\cos ^{-1}\left(\frac{15^{2}-7^{2}-19^{2}}{-2(7)(19)}\right)=45.93 \\ C=\cos ^{-1}\left(\frac{19^{2}-7^{2}-15^{2}}{}=114.47\right.\end{array}\right\}$ H9.99 J
$C=\cos ^{-1}\left(\frac{19^{2}-7^{2}-15^{2}}{-2(7)(15)}\right)=114.47$
4. Twelve horses are equally spaced on a merry-go-round. If the chord connecting the center of each horse is 18 feet long, what is the diameter of the merry-go-round? What is the length of the arc between each horse?

6 Review day 1.notebook

HOMEWORK
Review
p 461 1-73 odd, 79-90, 93,95
p 465 1-15
Workbook p 151-152 1-12
p 445 2, 10, 28, 30, 32

1. Solve the triangle.
$B=35, b=12, c=15$
2. Solve the triangles given the following information.
a. $C=75, b=49, c=48$

6 Review day 1.notebook

