7.5 Operations with Matrices.notebook

7.5 Operations with Matrices

Matrix- a rectangular array of numbers that can be represented as a letter $\quad A, B, C$,etc

OR $\quad\left[a_{y}\right],\left[b_{y}\right],\left[c_{y}\right], e t c$

OR $\quad\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$

Two matrices are equal if they have the same order ($m \times n$) or dimension and all corresponding entries are equal.

Order of a matrix - (mxn)-(row x column)

$$
\begin{array}{cc}
\text { row } \begin{array}{cc}
\left(\begin{array}{ll}
2 & 1 \\
3 & 4
\end{array}\right) & 2 \times 2 \\
\text { column }
\end{array} \\
{\left[\begin{array}{lll}
5 & 1 & 7
\end{array}\right]} & 1 \times 3 \\
{[5]} & 1 \times 1 \\
{\left[\begin{array}{cccc}
7 & 5 & 2 & 6 \\
8 & 4 & -3 & 0 \\
1 & 10 & -9 & -12
\end{array}\right]} & 3 \times 4
\end{array}
$$

7.5 Operations with Matrices. notebook

Matrix Addition - must have the same order!
Exp: $\left[\begin{array}{ccc}3 & 6 & -1 \\ 2 & 5 & 7\end{array}\right]+\left[\begin{array}{ccc}-3 & 2 & 0 \\ -10 & 5 & 6\end{array}\right]=\left[\begin{array}{ccc}3+-3 & 6+2 & -1+0 \\ 2+-10 & 5+5 & 7+6\end{array}\right]$

$$
=\left[\begin{array}{ccc}
0 & 8 & -1 \\
-8 & 10 & 13
\end{array}\right]
$$

Ex2: $\left[\begin{array}{l}1 \\ 5 \\ -3\end{array}\right]-\left[\begin{array}{l}8 \\ 2 \\ -4\end{array}\right]=\left[\begin{array}{c}-7 \\ 3 \\ 1\end{array}\right]$

Scalar Multiplication

Ex3: $\left[\begin{array}{cc}4 & -6 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}8 & -12 \\ 0 & 2\end{array}\right]$

Solving a Matrix Equation

$$
\begin{aligned}
& \text { Ex: } 2 X-2 A=B \quad A=\left[\begin{array}{cc}
4 & -1 \\
0 & 4 \\
-3 & 8
\end{array}\right] \quad B=\left[\begin{array}{cc}
0 & 4 \\
-1 & 3 \\
1 & 7
\end{array}\right] \\
& \begin{aligned}
& 2 X-2 A+2 A=B+2 A \\
& \frac{1}{2}(2 X=B+2 A) \\
& X=\frac{1}{2}(B+2 A) \\
& X= \frac{1}{2}\left[\left[\begin{array}{cc}
0 & 4 \\
-1 & 3 \\
1 & 7
\end{array}\right]+2\left[\begin{array}{cc}
4 & -1 \\
0 & 4 \\
-3 & 8
\end{array}\right]\right] \\
&= \frac{1}{2}\left[\left[\begin{array}{cc}
0 & 4 \\
-1 & 3
\end{array}\right]+\left[\begin{array}{cc}
8 & -2 \\
0 & 8 \\
-6 & 16
\end{array}\right]\right] \\
&= \frac{1}{2}\left[\begin{array}{cc}
8 & 2 \\
-1 & 11 \\
-5 & 23
\end{array}\right] \\
& X=\left[\begin{array}{cc}
-4 & 11 \\
-5 / 2 & 23 / 2
\end{array}\right]
\end{aligned} .
\end{aligned}
$$

Matrix Multiplication - the column of the first matrix must match the row of the second matrix $A \times B=A B$ matrix $\quad \begin{aligned} & A \times B=A B \\ & \text { state the order of } A B\end{aligned}$ is $B A$ possible

$$
\underbrace{3 \times 4 \cdot 2 \times 3}_{\text {dons math }}
$$

 so not possible

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll}
1 \cdot 6+5 \cdot 1+7 \cdot 2 & 0 \cdot 6+2 \cdot 1+4 \cdot 2 & 2 \cdot 6+1 \cdot 1+10 \cdot 2
\end{array}-3 \cdot 6+0 \cdot 1+1 \cdot 2\right.} \\
1 \cdot 0+5 \cdot 4+7 \cdot 3 \\
0 \cdot 0+-2 \cdot-4+4 \cdot 3 \\
2 \cdot 0+1 \cdot .4+10 \cdot 3
\end{array}-3 \cdot 0+0 \cdot 4+1 \cdot 3\right][]\left[\begin{array}{cccc}
-3 & -10 & -7 & -16 \\
1 & 20 & 26 & 3
\end{array}\right]
$$

$$
\left.\begin{array}{rl}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{array}\right] \begin{aligned}
& \text { the identity matrix is one with } 1 \text { 's on } \\
& \text { the diagonal and 0's in all other } \\
& \text { positions. }
\end{aligned}
$$

$A I=A$ and $I A=A$
\[\begin{gathered} A B=B A
or
A B \neq B A \end{gathered} \]

$$
\text { p } 5363,7,11,23-37 \text { odd, } 41
$$

7.5 Operations with Matrices.notebook

