7.6 Inverses and Determinants of Square Matrix.notebook

C	OCOUGARS!
p 556 🕨	Iomework Questions
In Exercises 1–12, find th	he determinant of the matrix.
1. [4]	2. $[-10]$
3. $\begin{bmatrix} 0 & 4 \\ 2 & 3 \end{bmatrix}$	4. $\begin{bmatrix} -9 & 0 \\ 6 & 2 \end{bmatrix}$
5. $\begin{bmatrix} 6 & 2 \\ -5 & 3 \end{bmatrix}$	6. $\begin{bmatrix} 3 & -3 \\ 4 & -8 \end{bmatrix}$
$7. \begin{bmatrix} -7 & 6\\ \frac{1}{2} & 3 \end{bmatrix}$	$8. \begin{bmatrix} 4 & -3 \\ 0 & 0 \end{bmatrix}$
In Exercises 37–40, find <i>AB</i> .	(a) $ A $, (b) $ B $, (c) AB , and (d)
37. $A = \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix}, B$	$= \begin{bmatrix} 2 & 0\\ 0 & -1 \end{bmatrix}$
38. $A = \begin{bmatrix} 4 & 0 \\ 3 & -2 \end{bmatrix}, B =$	$\begin{bmatrix} -1 & 1 \\ -2 & 2 \end{bmatrix}$
In Exercises 49–60, solve for x.	
51. $\begin{vmatrix} 2x & -3 \\ -2 & 2x \end{vmatrix} = 3$	
53. $\begin{vmatrix} x & 1 \\ 2 & x-2 \end{vmatrix} = -1$	
55. $\begin{vmatrix} x+3 & 2\\ 1 & x+2 \end{vmatrix} = 0$	

Feb 2-9:51 PM

May 3-10:30 AM

Ex1 find AB and BA
$$A = \begin{bmatrix} 2 & -1 \\ -3 & 1 \end{bmatrix} \quad B = \begin{bmatrix} -1 & -1 \\ -3 & -2 \end{bmatrix}$$

 $AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ identity matrix \Rightarrow A & B are inverses
of each other
 $BA = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
 $AB = BA$
because A & B are inverses!

May 11-9:36 AM

7.6 Inverses and Determinants of Square Matrix.notebook

May 11-9:48 AM

May 15-5:55 AM

Feb 2-9:51 PM