WARM UP

1) Complete the table of values for:

Then graph the table of values on graph paper in your workbook.
Last, use your calculator to confirm your graph.

Write the domain and range of each graph using interval notation.
2)

D $(-4,3)$
R $(-2,4)$
3)

$D[1, \infty)$
R $[0, \infty)$?

7.8 Graphing Radical Equations

On your graph paper, you
 should have the graph of:

$$
y=\sqrt{x}
$$

$D:[0, \infty) \quad R:(0, \infty)$
Predict what this graph would look like.
Then confirm with calculator.

$$
y=\sqrt{x}+3 \text { up } 3
$$

$$
D:(0, \infty) R:(3, \infty)
$$

$y=\sqrt{x}+5$
State the domain and range.
$D:[0, \infty)$
$R: C 5, \infty)$
$y=\sqrt{x}-4$
$D:(0, \infty) \quad R:[-4, \infty)$

Feb 9-9:08 AM

Graphing Radical Equations

Summary What happens to the graph of $y=\sqrt{x}$?
$y=\sqrt{x}+a$
move up
$y=\sqrt{x}-a$
moves down
$y=\sqrt{x+a}$
$y=\sqrt{x-a}$
move left moves right

Feb 9-9:08 AM

Summary

$$
\begin{aligned}
& y=\sqrt{x} \\
& y=-\sqrt{x}
\end{aligned}
$$

A negative in front of the square root reflects over x-anis
and changes the range!

Jan 8-6:14 AM

How could you state the domain of a square root function without the graph?

$$
y=\sqrt{x+3}
$$

In math that looks like: $x+3 \geq 0$ so.... $x \geq-3$
Interval Notation would be: $[-3, \infty)$

domain? $\quad y=\sqrt{2 x-12}$

$$
\begin{aligned}
& 2 x-12 \geq 0 \\
& 2 x \geq 12 \quad[6, \infty) \\
& x \geq 6 \quad[6, \infty
\end{aligned}
$$

Feb 9-7:41 AM

