

Feb 4-11:12 AM

Aug 14-8:25 AM

(5)

Exponential Growth Model

You can use an exponential function to model growth or decay

$$y = ab^x$$
 where $b = 1 \pm r$
 $\gamma = a(1 \pm r)^x$

So we will use:

ending
$$y = a (1 \pm r)^{x}$$

there
initial amount

rate rate as a growled from the large terms and decimal

Aug 14-8:25 AM

$$y = a(1 \pm r)^{x}$$

Kirsten invests \$2000 into a CD with a 5% annual interest rate.

- a. Write an equation that represents the amount of money in the CD over time. $\gamma = 2000 (1+.05)^{2}$
- b. How much money will she have after 15 years?

What would this graph look like? Let's plot some points! using reference pts

Aug 14-8:25 AM

So for decay we will use: $y = a (1-r)^x$

Quinn's new motorcycle is valued at \$15,000. With an annual depreciation rate of 25%, find the value of the motorcycle after 5 years?

Without graphing, determine whether each function

represents exponential growth or exponential decay.

$$y = 125(1.6)^{x} \qquad y = \frac{1}{4} \left(\frac{1}{2}\right)^{x} \qquad y = 2(0.3)^{x} \qquad f(x) = \left(\frac{5}{2}\right)^{x}$$

growth decay decay growth

Aug 14-10:49 AM

For each function,

find the percent increase or decrease.
$$y = 125(1.6)^{x}$$

$$y = 2(0.3)^{x}$$

$$2(1-3)$$

$$30\% \text{ decrease}$$

HW 8.1/8.2

p. 434 # 5, 7, 5b,13-16 all, 25-29 odd, 30, 32, 36-38 all, 60-62 all

Feb 21-6:50 PM