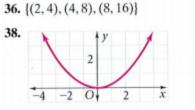
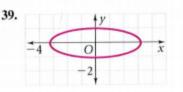

Pg. 59 #5-11 odd (domain and range only no mapping), 13-23 odd, 26, 29, 38, 39, 43-45

For each function, find f(-5), f(-3), $f(\frac{1}{2})$, and f(4).

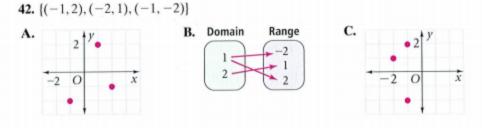

22. $f(a) = 2a + 3$	23. $f(y) = -3y - 2$	24. $f(z) = z + 9.5$
25. $f(x) = -x - 7^{10}$	26. $f(d) = 1 - 4d$	27. $f(x) = 2x - 3$
28. $f(h) = -6h - \frac{2}{3}$	29. $f(x) = \frac{5}{6}x + \frac{1}{3}$	30. $f(t) = \frac{1}{2}t - 2$


 Measurement One meter equals about 39.37 in. Write a function rule for converting inches to meters. Evaluate the function for 59 in.

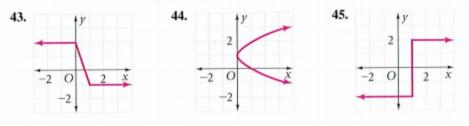
Graph each relation. Find the domain and range.

32. {(2, 4), (3, 5), (4, 6), (5, 7)}
33. {(-1, 1), (-2, 2), (-3, 3), (-4, 4)}
34. {(
$$-\frac{1}{2}, 2$$
), ($2, \frac{1}{2}$), ($0, -\frac{1}{2}$), ($-\frac{1}{2}, -2$)}
35. {($\frac{3}{2}, -\frac{1}{2}$), ($\frac{5}{2}, \frac{1}{2}$), ($\frac{1}{2}, \frac{1}{2}$), ($-\frac{3}{2}, \frac{1}{2}$)}

Find the domain and range of each relation and determine whether it is a function.



37. $\{(-1,2), (-2,5), (-2,7), (0,2), (9,2)\}$


Match each relation with a model.

40. {(1, 2), (-1, -2), (2, -1)}

41. {(2,1), (1,2), (1,-2)}

Determine whether each graph represents y as a function of x.

