pg. 241 \#1-9 (state a, b, c only), 10-15, 44-47
\#1-9 Determine if each function is quadratic, linear or a constant. Then identify the values of $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$, given the standard form is $y=a x^{2}+b x+c$

1. $y=x+4$
2. $y=2 x^{2}-(3 x-5)$
3. $y=3 x(x-2)$
4. $f(x)=x^{2}-7$
5. $y=(x-2)(x+5)$
6. $g(x)=-7(x-4)$
7. $h(x)=(3 x)(2 x)+6$
8. $y=x(1-x)-\left(1-x^{2}\right)$
9. $f(x)=-x(2 x+8)$

Identify the vertex and the axis of symmetry of each parabola.
10.

11.

12.


For each parabola, identify points corresponding to $P$ and $Q$.
13.

14.

15.

44. For which quadratic function is -3 the constant term?
A. $y=(3 x+1)(-x-3)$
B. $y=x^{2}-3 x+3$
C. $f(x)=(x-3)(x-3)$
D. $g(x)=-3 x^{2}+3 x+9$
45. The vertex of a parabola is $(3,2)$. A second point on the parabola is $(1,7)$. Which point is also on the parabola?
F. $(-1,7)$
G. $(3,7)$
H. $(5,7)$
J. $(3,-2)$
46. The graph of a quadratic function has vertex $(-3,-2)$. What is the axis of symmetry?
A. $x=-3$
B. $x=3$
C. $y=-2$
D. $y=2$
47. Which function is NOT a quadratic function?
F. $y=(x-1)(x-2)$
G. $y=x^{2}+2 x-3$
H. $y=3 x-x^{2}$
J. $y=-x^{2}+x(x-3)$

Solve by using elimination
50. $\left\{\begin{aligned} 3 x+y-2 z & =-3 \\ x-3 y-z & =-2 \\ 2 x+2 y+3 z & =11\end{aligned}\right.$

