Warm Up

Complete the square to put in vertex form.

$$
\begin{aligned}
y & =2 x^{2}+10 x+3 \\
\left.y-3+\frac{2\left(\frac{5}{4}\right)}{2}\right) & =2\left(x^{2}+5 x+\frac{\left(\frac{5}{2}\right)^{2}}{2}\right) \\
y-3+\frac{25}{2} & =2\left(x+\frac{5}{2}\right)^{2} \\
y+\frac{19}{2} & =2\left(x+\frac{5}{2}\right)^{2}-\frac{19}{2}
\end{aligned}
$$

10.2 Parabolas

Standard Form
Vertex Form

Definition of Parabola

A parabola is the set of all points (x, y) in a plane that are equidistant from a fixed line (directrix) and a fixed point (focus) not on the line.

Focal Chord - a line segment with endpoints on the parabola through the focus.

Latus Rectum - a focal chord parallel to the directrix and perpendicular to the axis of symmetry.

Its length $=\frac{1}{a}$

To find distance from $\vee \longrightarrow F \& V \longrightarrow D$ use
 $$
p=\frac{1}{4 a}^{=p} \quad=p
$$

Example
Find the vertex, focus and directrix for

$$
\underline{y}=\frac{-1}{12} x^{2}
$$

Then sketch the graph

$$
\begin{aligned}
V(0,0) & p=\frac{1}{4 a} \\
F(0-3) & p=\frac{1}{4(\sqrt{n})} \\
D y=3 & =\frac{1}{\frac{1}{3}} \\
& =3
\end{aligned}
$$

Find the equation of the parabola whose vertex is $(3,2)$ and focus is $(1,2)$.
Sketch the parabola.

$$
\begin{aligned}
& p\left[\begin{array}{l}
V(3,2) \\
F(1,2) \\
p=2 \\
2=\frac{1}{4 a} \\
a=\frac{1}{8}
\end{array}\right.
\end{aligned}
$$

Find the equation of the parabola whose focus is $(3,2)$ and directrix is $x=-3$.

$$
\begin{aligned}
& F(3,2) \\
& V(0,2)] \quad p=3 \\
& D x=-3 \quad a=\frac{1}{12} \\
& \quad x=\frac{1}{12}(y-2)^{2}
\end{aligned}
$$

State the vertex, focus and directrix of the

$$
\begin{aligned}
& \text { parabola } \quad x=-\frac{1}{4}(y-2)^{2}+3 \\
& V(3,2) \quad P=\frac{1}{4(1 / 4)}=1 \\
& F(2,2) \\
& D x=4
\end{aligned}
$$

State the focus of the parabola

$$
\begin{gathered}
y=-\frac{1}{6}\left(x^{2}+4 x-2\right) \\
y-\frac{1}{3}=-\frac{1}{6}\left(x^{2}+4 x+2^{2}\right) \\
+-\frac{1 / 2}{6}(4) \\
y-\frac{1}{3}-\frac{2}{3}=-\frac{1}{6}(x+2)^{2} \\
y=-\frac{1}{6}(x+2)^{2}+1 \\
V(-2,1) \quad P=\frac{1}{4\left(y_{6}\right)} \\
f(-2,-1 / 2) \quad=\frac{3}{2}
\end{gathered}
$$

Find the equation of line tangent to the parabola $y=\frac{1}{2} x^{2}$ through the point $\left(3, \frac{9}{2}\right)$.

$$
\begin{array}{r}
m=\frac{-\frac{9}{2}-\frac{9}{2}}{0-3}=3 \\
y=3 x-\frac{9}{2}
\end{array}
$$

$$
\begin{aligned}
& p=\frac{1}{4\left(\frac{1}{2}\right)}=\frac{1}{2} \\
& d_{2}=\sqrt{3^{2}+4^{2}} \\
& =5 \\
& d_{1}=5=\sqrt{0^{2}+\left(\frac{1}{2}-b\right)^{2}} \\
& 5=\frac{1}{2}-b \\
& \frac{9}{2}=-b \\
& -\frac{9}{2}=-b
\end{aligned}
$$

HOMEWORK

p 740 5-10,
15, 19-25 odd, (get in alternate form first!)
33, 35, 41, 45-49 odd, 55, 57 (in slope intercept form), 61, 63

$$
y=a(x-h)^{2}+k
$$

Vertex
(h, k)
$y=a(y-k)^{-}+h$ (h,k)

Axis of Symmetry

$$
x=h
$$

$$
y=k
$$

Focus

$$
\left(h, k+\frac{1}{4 a}\right)
$$

$$
\left(h+\frac{1}{4 a}, k\right)
$$

Directrix

$$
y=k-\frac{1}{4 a}
$$

$$
x-h-\frac{1}{4 a}
$$

LR

$$
\left|\frac{1}{a}\right|
$$

$$
\left|\frac{1}{a}\right|
$$

Aug 29-6:38 AM

