## Warm up

1. Find the equation of a parabola with latus rectum length of 8 ending at $(2,-1)$ and $(2,7)$ and opens to the left.
2. Find the equation of the parabola with a directrix $y=2$ and focus (2, 4).
3. Find the focus point of $x=\frac{1}{16}(y+7)^{2}-3$


Feb 2-9:51 PM

### 10.3 The Ellipse.notebook

# 10.3 The Ellipse <br> Find the equation given points Find the points given an equation 

## Definition of Ellipse

An ellipse is the set of all points $(x, y)$ in a plane, the sum of whose
distances from two distinct fixed points (foci) is constant. see below
middle to vertex $=\mathrm{a}$
major axis $=2 \mathbf{a} \quad$ vertices are on major axis
middle to side $=\mathrm{b}$
minor axis $=2 b$
middle to focus $=\underset{\sim}{c}$ foci on major axis


$$
\begin{aligned}
& \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad \frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1 \\
& a>b>0 \\
& a^{2}-b^{2}=c^{2} \\
& \text { horizontal ellipse }
\end{aligned}
$$

Find equation of an ellipse with
$F_{1}(-2,2) F_{2}(4,2)$
Major axis length of 10

$$
\begin{aligned}
& m=(1,2) \\
& F=(-2,2)
\end{aligned}
$$

$\frac{(x-1)^{2}}{25}+\frac{(y-2)^{2}}{16}=1$
$a^{2}-b^{2}=c^{2}$
$\begin{aligned} 5^{2}-b^{2} & =3^{2} \\ -b^{2} & =9-25\end{aligned}$


$$
\begin{aligned}
& b^{2}=16 \\
& b=4
\end{aligned}
$$

Find the middle, foci and vertices for $9 x^{2}+4 y^{2}+36 x-8 y+4=0$ and sketch.

$$
9 x^{2}+36 x+4 y^{2}-8 y=-4
$$

$$
9\left(x^{2}+4 x+z^{2}\right)+4\left(y^{2}-2 y+1^{2}\right)=-4+9(4)+4(1)
$$

$$
\frac{9}{36}(x+2)^{2}+\frac{4(y-1)^{2}}{36}=\frac{36}{36}
$$

$$
\frac{(x+2)^{2}}{4}+\frac{(y-1)^{2}}{9}=1 \quad a=3
$$

$$
\begin{array}{ll}
4 & b=2 \\
m(-2,1) & c=\sqrt{5}
\end{array}
$$

$$
F(-2,1 \pm \sqrt{5})
$$

$$
V(-2,4)(-2,-2)
$$

Now you try! Find the middle, vertices and foci
$16 x^{2}+25 y^{2}-32 x-50 y+16=0$
$16\left(x^{2}-2 x+1\right)+25\left(y^{2}-2 y+1\right)=-16+16+25$
$\frac{16(x-1)^{2}}{25}+\frac{25(y-1)^{2}}{25}=\frac{25}{25}$
$\frac{(x-1)^{2}}{25 / 16}+\frac{(y-1)^{2}}{1}=1 \quad a=5 / 4$
$m(1,1) \quad b=1$
$F\left(\frac{7}{4}, 1\right)\left(\frac{1}{4}, 1\right) \quad c=3 / 4$

$V\left(\frac{2}{4}, 1\right)\left(-\frac{1}{4}, 1\right)$

## Planetary orbits

## apogee - the greatest distance from an object orbiting around another

perigee - the smallest distance from an object orbiting around another
the object that is traversed around sits at a focus.

The first artificial satellite to orbit the earth was Sputnik (launched by Russia in 1957). Its orbit was elliptical with the center of the earth at one focus. The major and minor axes of the orbits had lengths of $13,906 \mathrm{~km}$ and $13,887 \mathrm{~km}$, respectively. Find the apogee and perigee from Earth's center to the satellite. Use these to find the least distance and greatest distance of the satellite from Earth's surface in this orbit.

$$
\begin{array}{lllll}
\text { (Earth has a radius of } 6378 \mathrm{~km} .) & 2 b & =13887 & c^{2}=6953^{2}-6943.5^{2} \\
\vdots & a=6953 & b & =69435 & c=363.34
\end{array}
$$

A circle is a special type of ellipse where $\mathrm{a}=\mathrm{b}$ !

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}=1 \quad \text { or } \quad x^{2}+y^{2}=a^{2}
$$

## Eccentricity

One of the reasons it was difficult for early astronomers to detect that the orbits of the planets are ellipses is that the foci of the planetary orbits are relatively close to their centers, and so the orbits are nearly circular. To measure the ovalness of an ellipse, you can use the concept of eccentricity.

```
Definition of Eccentricity
The eccentricity e of an ellipse is given by the ratio
\[
e=\frac{c}{a}
\]
```



The closer the eccentricity is to 0 the more circular the ellipse is.

$$
\text { Discuss } \frac{x^{2}}{25}+\frac{y^{2}}{4}=1
$$

# Discuss changes in equation for vertical ellipse 

