Warm up

State the exact value (ratio) of the trig function without a calculator.

1.
$$\cos 30^{\circ}$$
 $\frac{\boxed{3}}{2}$

2.
$$\sin \frac{\pi}{6}$$
 $\frac{1}{2}$

4.
$$\cos \frac{\pi}{3}$$
 $\frac{1}{2}$

What quadrant am I in?

6.
$$\frac{4\pi}{7}$$
 2 7. 4.3

9.
$$-\frac{11\pi}{6}$$

Jan 7-3:52 PM

Homework Questions p265

In Exercises 3-6, determine the quadrant in which each angle lies. (The angle measure is given in radians.)

3. (a)
$$\frac{7\pi}{4}$$

(b)
$$\frac{117}{4}$$

(b)
$$\frac{11\pi}{4}$$
 4. (a) $-\frac{5\pi}{12}$ (b) $-\frac{13\pi}{9}$ (b) -2 6. (a) 3.5 (b) 2.25

(b)
$$-2$$

In Exercises 7-10, sketch each angle in standard position.

7. (a)
$$\frac{3\pi}{4}$$

(b)
$$\frac{4\pi}{2}$$

7. (a)
$$\frac{3\pi}{4}$$
 (b) $\frac{4\pi}{3}$ 8. (a) $-\frac{7\pi}{4}$ (b) $-\frac{5\pi}{2}$ 9. (a) $\frac{11\pi}{6}$ (b) $\frac{2\pi}{3}$ 10. (a) 4 (b) -3

9. (a)
$$\frac{117}{6}$$

(b)
$$\frac{2\pi}{3}$$

(b)
$$-3$$

In Exercises 23-26, determine the quadrant in which each angle lies.

In Exercises 27-30, sketch each angle in standard position.

28. (a)
$$-270^{\circ}$$
 (b) -120°

30. (a)
$$-450^{\circ}$$
 (b) -600°

4.1 Day 3-Radian and Degree Measure

- Coterminal Angles
- Complementary and Supplementary Angles
- Conversions
- DMS with and without Calculator

Nov 21-9:17 AM

Find one positive and one negative coterminal angle for:

90°
$$\frac{\pi}{2}$$

90° $\frac{\pi}{2}$

90+360 = 450° $\frac{\pi}{2}$ +2 π

90-360° = -270° $\frac{\pi}{2}$ + $\frac{4\pi}{2}$ = $\frac{5\pi}{2}$
 $\frac{\pi}{2}$ - $\frac{4\pi}{2}$ = $-\frac{3\pi}{2}$

Nov 21-9:21 AM

Find one positive and one negative coterminal angle for:

$$\begin{array}{rcl}
437^{\circ} & & & \frac{2\pi}{7} \\
+ \cot A & 437 + 360 & = 797 \\
+ \cot A & 437 - 360 & = 71 ??? & + \cot A & = \frac{2\pi}{7} + 2\pi \\
- \cot A & 71 \cdot 360 & = -283
\end{array}$$

$$\begin{array}{rcl}
-\cot A & 7 \cdot 360 & = -283 \\
-\cot A & 7 \cdot 360 & = -283
\end{array}$$

$$\begin{array}{rcl}
-\cot A & 7 \cdot 360 & = -283 \\
-\cot A & 7 \cdot 147 & = -147 \\
\hline
- \cot A & -217 \\
\hline
- \cot A & -217 \\
\hline
- \cot A & -217 \\
\hline
- \cot A & -77 \\
\hline
\end{array}$$

Complementary Angles: Two positive angles whose sum is or or

Supplementary Angles: Two positive angles whose sum is or or

Give the complement and supplement for the following:

57°
$$\frac{2\pi}{9}$$
51+c = 90
$$C = 33$$
51+s = 180
$$S = 123$$
1.45
$$\frac{4\pi}{9} + C = \frac{\pi}{2}$$
1.45+c = 1.57
$$C = \frac{4\pi}{18} - \frac{4\pi}{18}$$
1.45+s = 3.14
$$S = 1.19$$
24+s = π

$$\frac{5\pi}{7}$$
1.00°
$$\frac{5\pi}{7}$$
1.00 comp
$$\frac{5\pi}{7}$$
1.00 comp
$$\frac{5\pi}{7}$$
1.00 comp

Nov 21-9:26 AM

Converting Degrees ↔ Radians

Recall $180^{\circ} = \pi$, $\therefore \frac{\pi}{180^{\circ}}$ Converts degrees to Radians

$$25^{\circ} \cdot \frac{\pi}{180^{\circ}} = \frac{25\pi}{180} = \frac{5\pi}{36}$$

$$\frac{180^{\circ}}{\pi}$$
 Converts Radians to degrees
$$\frac{5\pi}{18} \cdot \frac{180^{\circ}}{\pi} = 50^{\circ}$$

Converting Between Forms

Degrees to Radians: Multiply by

2. 58°

Nov 21-9:39 AM

Converting Between Forms

Radians to Degrees Multiply by

$$2. -\frac{3\pi}{8} \cdot \frac{45}{\pi} = -\frac{135}{2}$$

3. 2.45

Degrees, Minutes, Seconds

There are two basic forms for expressing degrees:

- 1. Decimal Degrees (DD)
- 2. Degree-Minute-Second (DMS)

1 degree = 60 minutes $1^{\circ} = 60'$

1 minute = 60 seconds 1' = 60''

1 degree = 3600 seconds $1^{\circ} = 3600''$

Nov 21-9:44 AM

Degrees, Minutes, Seconds on Calculator

Convert 39.25° to DMS.

Convert 185°13'42" decimal form.

Feb 2-9:51 PM