Warm up

State the exact value (ratio) of the trig function without a calculator.

1. $\cos 30^{\circ} \frac{\sqrt{3}}{2}$
2. $\sin \frac{\pi}{6} \quad \frac{1}{2}$
3. $\tan 45^{\circ} \quad 1$
4. $\cos \frac{\pi}{3} \frac{1}{2}$

What quadrant am I in?
5. $272^{\circ} 4$
6. $\frac{4 \pi}{7}$
2
7. 4.33
8. -367°
4
9. $-\frac{11 \pi}{6} \quad$ ।
10. $-1.6 \quad 3$

In Exercises 3-6, determine the quadrant in which each angle lies. (The angle measure is given in radians.)
3. (a) $\frac{7 \pi}{4}$
(b) $\frac{11 \pi}{4}$
4. (a) $-\frac{5 \pi}{12}$
(b) $-\frac{13 \pi}{9}$
5. (a) -1
(b) -2
6. (a) 3.5
(b) 2.25

In Exercises 7-10, sketch each angle in standard position.
7. (a) $\frac{3 \pi}{4}$
(b) $\frac{4 \pi}{3}$
8. (a) $-\frac{7 \pi}{4}$
(b) $-\frac{5 \pi}{2}$
9. (a) $\frac{11 \pi}{6}$
(b) $\frac{2 \pi}{3}$
10. (a) 4
(b) -3

In Exercises 23-26, determine the quadrant in which each angle lies.
23. (a) 150°
(b) 282°
24. (a) 87.9°
(b) 8.5°
25. (a) $-132^{\circ} 50^{\prime}$
(b) $-336^{\circ} 30^{\prime}$
26. (a) -245.25°
(b) -12.35°

In Exercises 27-30, sketch each angle in standard position.
27. (a) 30°
(b) 150°
28. (a) -270° (b) -120°
29. (a) 405°
(b) 780°
30. (a) -450°
(b) -600°
4.1 Day 3-Radian and Degree Measure

- Coterminal Angles
- Complementary and Supplementary Angles
- Conversions
- DMS with and without Calculator

Coterminal Angles: Angles that share initial and terminal sides

How can you find coterminal angles?

$$
\pm 360^{\circ} \pm 2 \pi \quad \pm 6.28 \mathrm{rad}
$$

Find one positive and one negative coterminal angle for:

$$
\begin{array}{ll}
90^{\circ} \\
90+360=450^{\circ} & \frac{\pi}{2} \\
90-360^{\circ}=-270^{\circ} & \frac{\pi}{2}+2 \pi \\
\frac{\pi}{2}+\frac{4 \pi}{2}=\frac{5 \pi}{2} \\
\frac{\pi}{2}-2 \pi \\
\frac{\pi}{2}-\frac{4 \pi}{2}=-\frac{3 \pi}{2}
\end{array}
$$

Find one positive and one negative coterminal angle for:
437°
+iOTA $437+360=797$
$=77$
$+\cot A$
$\frac{2 \pi}{7}+2 \pi$
$\begin{array}{ll}+\operatorname{COTA} A & 437-360=77 ? ?\end{array} \quad+\operatorname{COTA} \quad \frac{2 \pi}{7}+\frac{14 \pi}{7}=\frac{16 \pi}{7}$

- cot $77-360=-283 \quad-\operatorname{cotA} \quad \frac{2 \pi}{7}-\frac{14 \pi}{7}=-\frac{12 \pi}{7}$

$$
\begin{array}{rrcc}
-52^{\circ}+\operatorname{coTA} 308 & -\frac{11 \pi}{5} & +\operatorname{coTA} A & \frac{9 \pi}{5} \\
-\operatorname{COTA}-412 & -\operatorname{cotA} & -\frac{21 \pi}{5} \\
& -\operatorname{COTA} A & -\frac{\pi}{5}
\end{array}
$$

Complementary Angles: Two positive angles whose sum
is
or or

Supplementary Angles: Two positive angles whose sum is or \square or

Give the complement and supplement for the following:

$$
\begin{aligned}
& 57^{\circ} \\
& \frac{2 \pi}{9} \\
& 1.45 \\
& 57+c=90 \\
& \frac{2 \pi}{9}+c=\frac{\pi}{2} \\
& C=33 \\
& \begin{aligned}
57+s & =180 \\
s & =123
\end{aligned} \\
& \begin{aligned}
57+5 & =180 \\
s & =123
\end{aligned} \\
& c=\frac{9 \pi}{18}-\frac{4 \pi}{18} \\
& 1.45+c=1.57 \\
& c=12 \\
& =\frac{5 \pi}{18} \\
& 1.45+s=3.14 \\
& s=1.69 \\
& \begin{aligned}
\frac{2 \pi}{9}+5 & =\pi \\
5 & =\frac{7 \pi}{9}
\end{aligned} \\
& \delta=\frac{7 \pi}{9} \\
& 100^{\circ} \begin{array}{l}
n 0 \operatorname{comp} \\
s=80
\end{array} \\
& \frac{5 \pi}{7} \quad \begin{array}{c}
\text { no comp } \\
s=2 \pi \\
\hline
\end{array}
\end{aligned}
$$

Converting Degrees \leftrightarrow Radians

Recall $180^{\circ}=\pi, \quad \therefore \frac{\pi}{180^{\circ}} \quad$ Converts degrees to Radians

$$
25^{\circ} \cdot \frac{\pi}{180^{\circ}}=\frac{25 \pi}{180}=\frac{5 \pi}{36}
$$

$\frac{180^{\circ}}{\pi}$ Converts Radians to degrees

$$
\frac{5 \pi}{18} \cdot \frac{180^{\circ}}{\pi}=50^{\circ}
$$

Converting Between Forms

Degrees to Radians: Multiply by

1. $225^{\circ} \cdot \frac{\pi}{180}=\frac{5 \pi}{4}$
2. 58°

Converting Between Forms

Radians to Degrees Multiply by

1. $\frac{5 \pi}{3}$
2. $-\frac{3 \pi}{\frac{8}{2}} \cdot \frac{45}{\frac{180}{\pi}}=-\frac{135}{2}$
3. 2.45

Degrees, Minutes, Seconds

There are two basic forms for expressing degrees:

1. Decimal Degrees (DD)
2. Degree-Minute-Second (DMS)

1 degree $=60$ minutes $\quad 1^{\circ}=60^{\prime}$
1 minute $=60$ seconds
$1^{\prime}=60^{\prime \prime}$

1 degree $=3600$ seconds $\quad 1^{\circ}=3600^{\prime \prime}$

Degrees, Minutes, Seconds on Calculator

Convert 39.25° to DMS.

Convert $185^{\circ} 13^{\prime} 42$ " decimal form.

Feb 2-9:51 PM

