Warm up

State the exact values of the following trig angles.

1. $\tan \frac{\pi}{6}$
2. $\sin 30^{\circ}$
3. $\cos \frac{\pi}{4}$
4. $\tan 60^{\circ}$
5. $\cos 30^{\circ}$
6. $\sin \frac{\pi}{3}$

Feb 2-9:51 PM

4-1 Angular Speed and Linear Speed

- arc length
- converting angular speed to linear speed and linear speed to angular speed

Arc Length

- The length of part of the circumference.
$a^{r c}$ ength The length of the arc depends on what two things?

1) The measure of the arc.
2) The size of the circle. \Rightarrow radius
\rightarrow central angle
An arc length measures distance while the measure of an arc is in degrees.

Arc Length

Find the value of x.

$$
\begin{array}{rlrl}
X & =\frac{2 \pi}{3} \cdot 12 \mathrm{in} \mathrm{(already} \mathrm{in} \mathrm{radians)} & \\
& =\frac{24 \pi}{3} \mathrm{in} & X & =5 \mathrm{rad} \\
& =8 \pi \mathrm{in} & X & =1.28 \mathrm{rad} \\
& 6.28-5=1.28
\end{array}
$$

Find x in radians.

Angular Speed - the rate at which an angle grows

- measured in radians/time (rad/sec, rad/hr, etc)

Linear Speed - the rate at which the arc length grows

- measured in length/time (ft/sec, m/hr, meters/min, etc)
- also can be referred to as velocity

A wheel rotates 200 revolutions per minute. Find the angular speed (rad/min) of the wheel.
(remember for every 1 revolution there are 2π rad.)

$$
\begin{aligned}
A S & =200 \frac{\mathrm{rex}}{\mathrm{~min}} \cdot \frac{2 \pi \mathrm{rad}}{1 \mathrm{kt}} \\
& =400 \pi \frac{\mathrm{rad}}{\mathrm{~min}} \\
& =1256.64 \frac{\mathrm{rad}}{\mathrm{~min}}
\end{aligned}
$$

To convert angular speed:

1 revolution $=2 \pi$ radians
1 radian $=$ length of a radius
The wheel from the previous problem has a radius of 7 inches. Find the linear speed of a point on the wheel in (in /sec)

How fast is the wheel moving in mph ?

$$
2800 \pi \frac{\mathrm{im}}{\mathrm{~mm}} \cdot \frac{1 \mathrm{ft}}{12 \mathrm{ft}} \cdot \frac{1 \mathrm{mi}}{5280 \mathrm{ft}} \cdot \frac{60 \mathrm{~mm}}{1 \mathrm{hr}_{\uparrow}}=
$$

$$
8.33 \mathrm{mph}
$$

$$
\begin{aligned}
& L S=A S \text { radius } \\
& L S=\text { radians } \text { radius } \\
& L S=400 \pi \frac{\operatorname{rod}}{\min } \cdot \frac{7 \text { in }}{1 \text { rod }} \\
& L S=2800 \pi \mathrm{in} \text { min } \cdot \frac{1}{\min } \operatorname{cosec} \\
& =146.61 \mathrm{ih} / \mathrm{sec}
\end{aligned}
$$

A 12-inch diameter wheel is traveling 35 mph . What is the angular speed of the wheel? What is the rate of revolution in seconds? $\quad L S=$ radians radius

$$
\begin{aligned}
r= & 6 \mathrm{in} \quad \frac{12 \mathrm{in}}{1 \mathrm{fr}} \cdot \frac{5280 \mathrm{ff}}{\mathrm{~m}} \cdot 35 \frac{\mathrm{mr}}{\mathrm{n}}
\end{aligned}=A S \cdot 6 \mathrm{in} .
$$

The second hand of a clock is 10.2 cm . long. Find the linear speed of the tip of the second hand.

$$
r=10.2 \mathrm{~cm}
$$

$L S=A S$ radius

$$
=\frac{1 \mathrm{rgo}}{\mathrm{~min}} \cdot \frac{2 \pi \mathrm{rec}}{1 \mathrm{kv}} \cdot \frac{10.2 \mathrm{~cm}}{1 \mathrm{sea}} . \quad \frac{\mathrm{rev}}{\min }
$$

$$
=64.09 \mathrm{~cm} / \text { min }
$$

