Warm up
Find the exact ratio of the following without a calculator:

1. $\sin \frac{2 \pi}{3}$
2. $\tan \frac{\pi}{2}$
3. $\sec 225^{\circ}$
4. $\cot 0$
5. $\cos \frac{\pi}{6}$
6. $\csc \left(-\frac{5 \pi}{6}\right)$
7. $\sin 240^{\circ}$
8. $\cot \frac{7 \pi}{4}$
9. $\sec \frac{2 \pi}{3}$
10. $\tan \frac{7 \pi}{6}$
11. $\csc 330^{\circ}$
12. $\cos \left(-270^{\circ}\right)$

Find the values of θ without a calculator $(0 \leq \theta<2 \pi)$
13. $\sin \theta=-\frac{\sqrt{3}}{2}$
14. $\cot \theta=$ und

Find the values of θ using a calculator $(0 \leq \theta<2 \pi)$
15. $\tan \theta=-1.3517$

Feb 2-9:51 PM

Feb 2-9:51 PM

Feb 2-9:51 PM

4.8 Applications and Models
 Solving Right Triangles
 AOE/AOD
 Word Problems

Solving a Right Triangle

Standard Lettering
Angle C is always 90°

Solve the Triangle.

$$
\begin{array}{ll}
A=36 & a=8.82 \\
B=54 & b=12.14 \\
C=90 & C=15 \quad a \\
&
\end{array} \begin{aligned}
& A=180-54-90 \\
& \\
& \\
&
\end{aligned}
$$

Solve the triangle.

$$
\begin{aligned}
& a=9.36 \\
& b=1.32 \\
& c=9.45 \\
& A \Rightarrow \cos A=\frac{1.32}{9.45} \\
& \cos ^{-1}\left(\frac{1.32}{9.45}\right) \\
& B \Rightarrow \sin B=\frac{1.32}{9.45} \\
& \sin ^{-1}\left(\frac{1.32}{9.45}\right)
\end{aligned}
$$

The angle of elevation from the base to the top of a water slide is 13°. The slide extends horizontally 58.2 meters. Approximate the height of the water slide.

$$
\begin{aligned}
& \tan 13=\frac{x}{58.2 \mathrm{~m}} \\
& 58.2 \tan 13=x \\
& 13.44 \mathrm{~m}
\end{aligned}
$$

An engineer builds a 75 -foot vertical cellular phone tower. A bird on the top of the tower flies to a point on the ground 95 feet away from the base of the tower. What is the angle of depression from the tower?

$$
\begin{gathered}
\tan \theta=\frac{75}{95} \\
\tan ^{-1}\left(\frac{75}{95}\right)=\theta \\
38.29 \mathrm{f}
\end{gathered}
$$

Section 4-8 Notes WB p 104 bearing

1. An airplane travels at $150 \mathrm{~km} / \mathrm{h}$ for 2 hours in a direction of 138° from

Omaha. At the end of this time, how for south of Omaha is the plane? How far east?
direction or bearing is measured from North

$$
300 \sin 48=5=222.94 \mathrm{~km}
$$

2. A forest ranger at a point A sights a fire directly south. A second ranger at a point $B, 7.5$ miles east, sights the same fire at a bearing of $S 27^{\circ} 23^{\prime} \mathrm{W}$.
How far from point A is the fire?

$$
\begin{aligned}
& \tan 62.62=\frac{x}{7.5} \\
x & =\frac{7.5}{\tan 27^{\circ} 23} \\
& =14.48 \text { miles }
\end{aligned}
$$

