WARM UP -

Chapter 6 Review - Get a whiteboard to complete the review problems. Be sure I can see your work and answers so I can give you feedback.

Let me know how you're feeling today!

1) Write in standard form, then classify by degree and \# of terms:
a) $5 x^{2}(3 x-7)$
b) $\left(x^{2}+3 x\right)^{2}$

1a) $15 x^{3}-35 x^{2}-$ Cubic Binomial

$$
\text { bb) } x^{4}+6 x^{3}+9 x^{2}-4 \text { th degree Trinomial }
$$

2) Write a polynomial function in standard form with zeros at -4 with a multiplicity of 2 and 0 with a multiplicity of 1 .

$$
\begin{aligned}
x(x+4)^{2} & =x(x+4)(x+4)^{\text {foil }} \\
\text { 2) } y & =\frac{x^{3}+8 x^{2}+16 x}{\mid} \text { NO!!! }
\end{aligned}
$$

3) Use synthetic division and the given factor of $(x+2)$ to factor $x^{3}+4 x^{2}+x-6$ COMPLETELY.

-2) $1411-6$ $\frac{-2}{}-4$| 6 |
| :---: |
| 2 |$-300 x^{2}+2 x-3$

3) $(x+3)(x+2)(x-1)$
$(x-1)(x+3)(x+2)$
4) Use synthetic division to see if $(x-2)$ is a factor of $x^{4}-6 x^{2}-27$. Is it a factor? Yes or No?

$$
\text { 2) } \begin{array}{ccccc}
1 & 0 & -6 & 0 & -27 \\
& 2 & 4 & -4 & -8 \\
\hline 1 & 2 & -2 & -4 & -35
\end{array}
$$

4) No, since the remainder in' $\dagger 0$. The remainder is -35
5) Use factoring to solve:
6) $x= \pm 3, \pm 2 i$

$$
\begin{aligned}
& x^{4}-5 x^{2}-36=0 \\
& \left(x^{2}-9\right)\left(x^{2}+4\right)=0 \\
& (x-3)(x+3)\left(x^{2}+4\right)
\end{aligned} \int^{x=3, x=-3} \begin{aligned}
& x^{2}=-4 \\
& x= \pm 2 i
\end{aligned}
$$

5) $x= \pm 2,3$
6) Find the zeros and state the multiplicity of each:

$$
\begin{array}{r}
\left.f(x)=(4 x)(x-3)^{2}(2 x+5)^{3} 6\right) x=0, \quad x=3, \quad x=-5 / 2 \\
\text { m. } 1 \text { m. } 2 \quad \text { m. } 3
\end{array}
$$

7) State the end behavior, factor to find zeros then sketch: $y=-2 x^{4}+12 x^{3}-18 x^{2}$

$$
\begin{gathered}
-2 x^{2}\left(x^{2}-6 x+9\right) \\
(x-3)(x-3) \\
-2 x^{2}(x-3)^{2} \\
x=0 \mid x=3
\end{gathered}
$$

What are the other two zero's?

$$
\left.\begin{array}{lccc}
-1) & -2 & -5 & 0 \\
\hline & 3 & 3 & -3 \\
\hline-2 & -3 & 3 & 0
\end{array}\right) \quad \begin{gathered}
9-(-24) \\
-2 x^{2}-3 x+3
\end{gathered}
$$

9) Use long division to divide:
$x^{4}+2 x^{3}+x-3 \div(x-1)$
10) $x^{3}+3 x^{2}+3 x+4+1 /(x-1)$
11) Write a cubic polynomial that represents this graph.

12)

Nov 16-1:51 PM

HW Review Ch 6

WORKBOOK
pg 52:-att part 62 1-15 odd
pg 53 Top Section 6.4 \#3-9 Mid Practice 6.5 \#1-9 odd

WARM UP - Calculator Review

1) Find the zeros of: $y=15 x^{4}-11 x^{3}-14 x^{2}$ Round answers to the nearest hundredth.
2) Find all the zero's.

$$
2 x^{4}-8 x^{3}-6 x^{2}-16 x-20=0
$$

3) Find a cubic equation, in standard form, with roots of 3 i and 4 .
4) Can $(x-2)$ be a factor of $x^{3}+4 x^{2}-6 x+7$?
5)

Why or why not?

OPTIONAL - WB pg. 54-55

Graphing Match Up in partners

HW Review Ch 6 - Day 2
pg 846-1-31 odd, 56-60 all

EXTRA SLIDES

CHECK HW

9. $-1, \frac{1 \pm i \sqrt{7}}{4}$
10. $3, \pm i$
11. $4, \frac{1 \pm i \sqrt{3}}{2}$
12. $2, \pm \sqrt{3}$
13. $\pm 2, \pm \sqrt{2}$
14. $\pm 2, \pm i$
15. $0, \frac{3 \pm 3 \sqrt{5}}{2}$
16. $-6, \pm i$
17. C 33. H
18. B
19. H
20. B
\square
Aug 29-11:17 AM

